分析 由数学归纳法可知n=k时,左端为1+2+3+…+(2k+1),到n=k+1时,左端1+2+3+…+(2k+3),从而可得答案.
解答 解:∵用数学归纳法证明等式1+2+3+…+(2n+1)=(n+1)(2n+1)时,
当n=1左边所得的项是1+2+3;
假设n=k时,命题成立,左端为1+2+3+…+(2k+1);
则当n=k+1时,左端为1+2+3+…+(2k+1)+(2k+2)+[2(k+1)+1],
∴从“k→k+1”需增添的项是(2k+2)+(2k+3).
故答案为:(2k+2)+(2k+3).
点评 本题考查数学归纳法,着重考查理解与观察能力,考查推理证明的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{AC}$ | B. | $\overrightarrow{BC}$ | C. | $\overrightarrow{AM}$ | D. | $\overrightarrow{AB}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-2,2] | B. | ($\frac{1}{2}$,1) | C. | (0,2) | D. | (1,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a,b,c成等差数列 | B. | a,c,b成等差数列 | C. | a,c,b成等比数列 | D. | a,b,c成等比数列 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3-2$\sqrt{2}$ | B. | 2$\sqrt{2}$+3 | C. | $\sqrt{2}$+1 | D. | $\sqrt{2}$-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com