精英家教网 > 高中数学 > 题目详情
8.已知集合A={x∈R|-2≤x≤5},B={x∈R|x2<9},则A∪B等于(  )
A.[-2,3)B.[3,5]C.(-3,5]D.(-∞,-3)∪[-2,+∞)

分析 先分别求出集合A和B,由此能求出A∪B.

解答 解:∵集合A={x∈R|-2≤x≤5},B={x∈R|x2<9}={x∈R|-3<x<3},
∴A∪B={x|-3<x≤5}=(-3,5].
故选:C.

点评 本题考查并集的求法,是基础题,解题时要认真审题,注意并集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.设f(x)=|3x-2|+|x-2|.
(Ⅰ)解不等式f(x)≤8;
(Ⅱ)对任意的非零实数x,有f(x)≥(m2-m+2)•|x|恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,内角A,B,C所对的边分别为a,b,c,且(2b-c)cosA=acosC,
(1)求A;
(2)若a=2$\sqrt{3}$,求△ABC的BC边上高的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知正项数列{an}满足a1=1,且an+1=$\frac{a_n}{{2{a_n}+1}}(n∈{N^*})$.
(1)证明数列$\{\frac{1}{a_n}\}$为等差数列,并求数列{an}的通项公式;
(2)设bn=(-1)n•n•an•an+1,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知实数x、y满足条件$\left\{\begin{array}{l}{x≤2}\\{y≤2}\\{x+y-2≥0}\end{array}\right.$,则$\frac{y+1}{x+4}$的取值范围为[$\frac{1}{6}$,$\frac{3}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合A={x∈R|0≤x≤4},B={x∈R|x2≥9},则A∪(∁RB)等于(  )
A.[0,3)B.(-3,4]C.[3,4]D.(-∞,-3)∪[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.甲、乙两名学生的六次数学测试成绩(百分制)如图所示.
①甲同学成绩的中位数大于乙同学成绩的中位数;
②甲同学的平均分比乙同学高;
③甲同学的平均分比乙同学低;
④甲同学成绩的标准差小于乙同学成绩的标准差.
上面说法正确的是(  )
A.③④B.①②C.②④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.下列结论中正确的是②④.
①$sin{750°}=\frac{{\sqrt{3}}}{2}$.
②如果随机变量ξ~$B(20,\frac{1}{2})$,那么D(ξ)为5.
③如果命题“?(p∨q)”为假命题,则p,q均为真命题.
④已知圆 x2+y2+2x-4y+1=0关于直线 2ax-by+2=0(a,b∈R)对称,则ab$≤\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知t=$\int_0^2{(3{x^2}-1)}$dx,若(1+tx)4=a0+a1x+a2x2+a3x3+a4x4,则a1-a2+a3-a4=-624.

查看答案和解析>>

同步练习册答案