17£®ÔÚ¡÷ABCÖУ¬DΪBC±ßÉϵĵ㣬BD=$\frac{1}{3}$BC£¬¡ÏADC=60¡ã£¬ÇÒ$\overrightarrow{BA}•\overrightarrow{BC}$+2S¡÷ABC=$\sqrt{2}$|$\overrightarrow{BA}$|•|$\overrightarrow{BC}$|£®
£¨1£©Çó½ÇB£»
£¨2£©Èô|AC|=$\sqrt{6}$£¬ÇóS¡÷ABC£®

·ÖÎö £¨1£©ÔËÓÃÏòÁ¿µÄÊýÁ¿»ýµÄ¶¨ÒåºÍÁ½½ÇºÍµÄÕýÏÒ¹«Ê½£¬¼ÆËã¼´¿ÉµÃµ½½ÇB£»
£¨2£©ÉèAD=x£¬BD=$\frac{1}{3}$a£¬CD=$\frac{2}{3}$a£¬ÔÚ¡÷ACDÖУ¬ÓÉÓàÏÒ¶¨Àí£¬ÔÚ¡÷ABDÖУ¬ÓÉÕýÏÒ¶¨Àí¿ÉµÃa=3£¬ÔÙÓÉÓàÏÒ¶¨Àí¿ÉµÃcosC£¬½ø¶øµÃµ½sinC£¬ÔÙÓÉÃæ»ý¹«Ê½¼ÆËã¼´¿ÉµÃµ½£®

½â´ð ½â£º£¨1£©Éè¡÷ABCµÄÄÚ½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£®
$\overrightarrow{BA}$•$\overrightarrow{BC}$+2S¡÷ABC=$\sqrt{2}$|$\overrightarrow{BA}$|•|$\overrightarrow{BC}$|£¬
¿ÉµÃcacosB+acsinB=$\sqrt{2}$ca£¬
¼´ÓÐsinB+cosB=$\sqrt{2}$£¬
¼´$\sqrt{2}$sin£¨B+45¡ã£©=$\sqrt{2}$£¬
ÓÉBΪÈý½ÇÐεÄÄڽǣ¬¼´ÓÐB+45¡ã=90¡ã£¬
½âµÃB=45¡ã£»
£¨2£©ÉèAD=x£¬BD=$\frac{1}{3}$a£¬CD=$\frac{2}{3}$a£¬
ÔÚ¡÷ACDÖУ¬ÓÉÓàÏÒ¶¨Àí¿ÉµÃ£¬
AC2=AD2+CD2-2AD•CD•cos60¡ã£¬
¼´Îª6=x2+$\frac{4}{9}$a2-$\frac{2}{3}$ax£¬
ÔÚ¡÷ABDÖУ¬B=45¡ã£¬¡ÏBAD=15¡ã£¬
ÓÉÕýÏÒ¶¨Àí¿ÉµÃ£¬$\frac{x}{sin45¡ã}$=$\frac{\frac{1}{3}a}{sin15¡ã}$£¬
¼´ÓÐx=$\frac{\sqrt{3}+1}{3}$a£¬
½âµÃa=3£¬x=$\sqrt{3}$+1£¬
ÔÚ¡÷ACDÖУ¬CD=2£¬AD=$\sqrt{3}+1$£¬AC=$\sqrt{6}$£¬
¼´ÓÐcosC=$\frac{6+4-£¨4+2\sqrt{3}£©}{2¡Á2\sqrt{6}}$=$\frac{\sqrt{6}-\sqrt{2}}{4}$£®
¼´ÓÐsinC=$\sqrt{1-co{s}^{2}C}$=$\frac{\sqrt{6}+\sqrt{2}}{4}$£¬
ÔòS¡÷ABC=$\frac{1}{2}$absinC=$\frac{1}{2}$¡Á3¡Á$\sqrt{6}$¡Á$\frac{\sqrt{6}+\sqrt{2}}{4}$
=$\frac{9+3\sqrt{3}}{4}$£®

µãÆÀ ±¾Ì⿼²éÏòÁ¿µÄÊýÁ¿»ýµÄ¶¨ÒåºÍÕýÏÒ¡¢ÓàÏÒ¶¨ÀíºÍÃæ»ý¹«Ê½µÄÔËÓã¬Í¬Ê±¿¼²éÁ½½ÇºÍµÄÕýÏÒ¹«Ê½£¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªÍÖÔ²CµÄÁ½¸ö½¹µã·Ö±ðΪF1£¨-1£¬0£©¡¢F2£¨1£¬0£©£¬¶ÌÖáµÄÁ½¸ö¶Ëµã·Ö±ðΪB1¡¢B2£¬
£¨1£©Èô¡÷F1B1B2ΪµÈ±ßÈý½ÇÐΣ¬ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÈôÍÖÔ²CµÄÀëÐÄÂÊΪ$\frac{1}{2}$£¬Ö±ÏßlÓëÍÖÔ²ÏཻÓÚA¡¢BÁ½µã£¬ÏÒABµÄÖеãΪ£¨${\frac{1}{2}$£¬1£©£¬ÇóÖ±ÏßlµÄ·½³Ì£»
£¨3£©ÈôÍÖÔ²CµÄ¶ÌÖ᳤Ϊ2£¬¹ýµãF2µÄÖ±ÏßlÓëÍÖÔ²CÏཻÓÚP¡¢QÁ½µã£¬ÇÒ$\overrightarrow{{F_1}P}$¡Í$\overrightarrow{{F_1}Q}$£¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èô$\sqrt{3}$sin£¨x+$\frac{¦Ð}{12}$£©+cos£¨x+$\frac{¦Ð}{12}$£©=$\frac{2}{3}$£¬ÇÒ-$\frac{¦Ð}{2}$£¼x£¼0£¬Çósinx-cosx£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Å×ÎïÏßy2=2pxÉϺá×ø±êΪ6µÄµãµ½´ËÅ×ÎïÏß½¹µãµÄ¾àÀëΪ10£¬Ôò¸ÃÅ×ÎïÏߵĽ¹µãµ½×¼ÏߵľàÀëΪ£¨¡¡¡¡£©
A£®4B£®8C£®16D£®32

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖªOÎª×ø±êÔ­µã£¬A£¨0£¬1£©£¬B£¨-3£¬4£©£¬CÔڽǡÏAOBµÄƽ·ÖÏßÉÏ£¬|$\overrightarrow{OC}$|=2£¬C×ø±êΪ£¨¡¡¡¡£©
A£®£¨$\frac{\sqrt{10}}{5}$£¬$\frac{3\sqrt{10}}{5}$£©B£®£¨-$\frac{\sqrt{10}}{5}$£¬-$\frac{3\sqrt{10}}{5}$£©C£®£¨$\frac{\sqrt{10}}{5}$£¬-$\frac{3\sqrt{10}}{5}$£©D£®£¨-$\frac{\sqrt{10}}{5}$£¬$\frac{3\sqrt{10}}{5}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®Èôsin¦Á-sin¦Â=-$\frac{1}{3}$£¬cos¦Á-cos¦Â=$\frac{1}{2}$£¬Ôòsin£¨¦Á+¦Â£©µÄÖµ$\frac{12}{13}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®½«10È˷ֳɼס¢ÒÒÁ½×飬¼××é4ÈË£¬ÒÒ×é6ÈË£¬Ôò²»Í¬µÄ×éÖÖÊýΪ210£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªÊýÁÐ{an}ÖУ¬Ç°mÏîÒÀ´Î¹¹³ÉÊ×ÏîΪ1£¬¹«²îΪ-2µÄµÈ²îÊýÁУ®µÚm+1ÏîÖÁµÚ2mÏîÒÀ´Î¹¹³ÉÊ×ÏîΪ1£¬¹«±ÈΪ$\frac{1}{2}$µÄµÈ±ÈÊýÁУ¬ÆäÖÐm¡Ý3£¬m¡ÊN*£®
£¨1£©Çóam£¬a2m
£¨2£©Èô¶ÔÈÎÒâµÄn¡ÊN*£¬¶¼ÓÐan+2m=an£®ÉèÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇóS4m+3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÊýÁÐ{an}µÄÊ×ÏîΪa1=2£¬Ç°nÏîºÍΪSn£¬ÇÒÂú×ãSn=$\frac{{n}^{2}}{{n}^{2}-1}$Sn-1+$\frac{n}{n+1}$£¨n¡Ý2£©
£¨1£©Ö¤Ã÷£ºÊýÁÐ{$\frac{n+1}{n}$Sn}ÊǵȲîÊýÁУ¬²¢Çó{an}µÄͨÏʽ£»
£¨2£©Éèbn=$\frac{{a}_{n}}{{n}^{2}+n+2}$£¬¼ÇÊýÁÐ{bn}µÄǰnÏîºÍΪTn£¬ÇóÖ¤£ºTn£¼1£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸