精英家教网 > 高中数学 > 题目详情
1.已知数列{an}的前n项和是Sn,且Sn=2an-1,数列{bn}满足b1=1,nbn+1=(n+1)bn,n∈N*
(1)求数列{an}和{bn}的通项公式;
(2)设数列{bn}的前n项和为Qn,Tn=Sn+2Qn+1,问,是否存在实数λ,使得对任意正整数n,不等式λTn≥Tn+1恒成立?若存在,求λ的最小值,若不存在,说明理由.

分析 (1)由Sn=2an-1,n=1时,a1=S1=2a1-1,解得a1=1.当n≥2时,an=Sn-Sn-1,化为:an=2an-1,利用等比数列的通项公式即可得出.数列{bn}满足b1=1,nbn+1=(n+1)bn,n∈N*,变形为:$\frac{{b}_{n+1}}{n+1}$=$\frac{{b}_{n}}{n}$,即可得出.
(2)Sn=2n-1,Qn=$\frac{n(n+1)}{2}$,Tn=Sn+2Qn+1=2n+n(n+1),不等式λTn≥Tn+1,λ≥$\frac{{T}_{n+1}}{{T}_{n}}$=2+$\frac{(n+1)(2-n)}{{2}^{n}+n(n+1)}$,n=1时,$\frac{{T}_{2}}{{T}_{1}}$=$\frac{5}{2}$,n≥2时,$\frac{(n+1)(2-n)}{{2}^{n}+n(n+1)}$≤0,即可得出.

解答 解:(1)由Sn=2an-1,n=1时,a1=S1=2a1-1,解得a1=1.
当n≥2时,an=Sn-Sn-1=2an-1-(2an-1-1),化为:an=2an-1
∴数列{an}是等比数列,公比为2,首项为1,
∴an=2n-1
数列{bn}满足b1=1,nbn+1=(n+1)bn,n∈N*
变形为:$\frac{{b}_{n+1}}{n+1}$=$\frac{{b}_{n}}{n}$,因此数列$\{\frac{{b}_{n}}{n}\}$是常数列,
∴$\frac{{b}_{n}}{n}$=1,可得bn=n.
(2)Sn=2×2n-1-1=2n-1,Qn=1+2+…+n=$\frac{n(n+1)}{2}$,Tn=Sn+2Qn+1=2n+n(n+1),
不等式λTn≥Tn+1,∴λ≥$\frac{{T}_{n+1}}{{T}_{n}}$=$\frac{{2}^{n+1}+(n+1)(n+2)}{{2}^{n}+n(n+1)}$=2+$\frac{(n+1)(2-n)}{{2}^{n}+n(n+1)}$,
n=1时,$\frac{{T}_{2}}{{T}_{1}}$=$\frac{5}{2}$,n≥2时,$\frac{(n+1)(2-n)}{{2}^{n}+n(n+1)}$≤0,
∴存在实数λ≥$\frac{5}{2}$,使得对任意正整数n,不等式λTn≥Tn+1恒成立.
∴λ的最小值是$\frac{5}{2}$.

点评 本题考查了等差数列与等比数列的通项公式求和公式、常数列、数列的单调性、递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.计算:$\frac{1}{2}$${∫}_{1}^{e}$xlnxdx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知焦点在y轴上的双曲线C的中心是原点O,离心率等于$\frac{{\sqrt{5}}}{2}$,以双曲线C的一个焦点为圆心,1为半径的圆与双曲线C的渐近线相切,则双曲线C的方程为(  )
A.$\frac{y^2}{16}-\frac{x^2}{4}$=1B.y2-$\frac{x^2}{4}$=1C.$\frac{y^2}{4}$-x2=1D.$\frac{x^2}{4}$-y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.阅读如图所示的程序框图,则输出S的值为22.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,侧面PAB⊥底面ABCD,PA=2$\sqrt{2}$,PB=2.
(I)求证:AC⊥平面PBD;
(II)若∠DAB=60°,求二面角B-PD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知命题p:?x<1,都有log${\;}_{\frac{1}{2}}}$x<0,命题q:?x∈R,使得x2≥2x成立,则下列命题是真命题的是(  )
A.p∨(¬q)B.(¬p)∨(¬q)C.p∨qD.p∧q

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知x、y满足约束条件$\left\{\begin{array}{l}x-y≥0\\ x+y-4≤0\\{({x-2})^2}+{y^2}≤4\end{array}\right.$,则z=-$\frac{{\sqrt{3}}}{3}$x+y的范围为$[{-2\sqrt{3},2-\frac{{2\sqrt{3}}}{3}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.一袋子中有10个大小相同标有数字的小球,其中4个小球标有数字1,3个小球标有数字2,2个小球标有数字3,1个小球标有数字4.从袋子中任取3个小球.
(Ⅰ)求所取的3个小球中所标有数字恰有两个相同的概率;
(Ⅱ)X表示所取的3个小球所标数字的最大值,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,某园林单位准备绿化一块直径为BC的半圆形空地,△ABC外的地方种草,△ABC的内接正方形PQRS为一水池,其余的地方种花.若BC=a,∠ABC=θ,设△ABC的面积为S1,正方形PQRS的面积为S2
(1)用a,θ表示S1和S2
(2)当a为定值,θ变化时,求$\frac{{S}_{1}}{{S}_{2}}$的最小值,及此时的θ值.

查看答案和解析>>

同步练习册答案