如图,椭圆C0:
=1(a>b>0,a、b为常数),动圆C1:x2+y2=t
,b<t1<a.点A1、A2分别为C0的左、右顶点,C1与C0相交于A、B、C、D四点.
![]()
(1) 求直线AA1与直线A2B交点M的轨迹方程;
(2) 设动圆C2:x2+y2=t
与C0相交于A′,B′,C′,D′四点,其中b<t2<a,t1≠t2.若矩形ABCD与矩形A′B′C′D′的面积相等,证明:t
+t
为定值.
科目:高中数学 来源: 题型:
已知角φ的终边经过点P(1,-1),点A(x1,y1)、B(x2,y2)是函数f(x)=sin(ωx+φ)(ω>0)图象上的任意两点.若|f(x1)-f(x2)|=2时,|x1-x2|的最小值为
,则f
=________.
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,已知椭圆C的方程为
+y2=1,A、B是四条直线x=±2,y=±1所围成的矩形的两个顶点.
(1) 设P是椭圆C上任意一点,若
,求证:动点Q(m,n)在定圆上运动,并求出定圆的方程;
(2) 若M、N是椭圆C上两个动点,且直线OM、ON的斜率之积等于直线OA、OB的斜率之积,试探求△OMN的面积是否为定值,并说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
在平面直角坐标系xOy中,已知定点A(-4,0)、B(4,0),动点P与A、B连线的斜率之积为-
.
(1) 求点P的轨迹方程;
(2) 设点P的轨迹与y轴负半轴交于点C.半径为r的圆M的圆心M在线段AC的垂直平分线上,且在y轴右侧,圆M被y轴截得的弦长为
r.
(ⅰ) 求圆M的方程;
(ⅱ) 当r变化时,是否存在定直线l与动圆M均相切?如果存在,求出定直线l的方程;如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知曲线C上动点P(x,y)到定点F1(
,0)与定直线l1∶x=
的距离之比为常数
.
(1) 求曲线C的轨迹方程;
(2) 以曲线C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与曲线C交于点M与点N,求
·
的最小值,并求此时圆T的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知双曲线C1:
=1(a>0,b>0)的离心率为2.若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的渐近线的距离为2,则抛物线C2的方程为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,在平面直角坐标系xOy中,椭圆C:
=1(a>b>0)的左焦点为F,右顶点为A,动点M 为右准线上一点(异于右准线与x轴的交点),设线段FM交椭圆C于点P,已知椭圆C的离心率为
,点M的横坐标为
.
(1) 求椭圆C的标准方程;
(2) 设直线PA的斜率为k1,直线MA的斜率为k2,求k1·k2的取值范围.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com