精英家教网 > 高中数学 > 题目详情
阅读如图所示的知识结构图,“求简单函数的导数”的“上位”要素有
 
个.
考点:结构图
专题:算法和程序框图
分析:首先对所画结构的每一部分有一个深刻的理解,从头到尾抓住主要脉络进行分解.然后将每一部分进行归纳与提炼,形成一个个知识点并逐一写在矩形框内,最后按其内在的逻辑顺序将它们排列起来并用线段相连,“求简单函数的导数”是建立在熟练掌握“基本求导公式”,“函数四则运算求导法则”和“复合函数求导法则”基础上的,故三者均为其上位.
解答: 解:“求简单函数的导数”是建立在熟练掌握“基本求导公式”,“函数四则运算求导法则”和“复合函数求导法则”基础上的,
故“基本求导公式”,“函数四则运算求导法则”和“复合函数求导法则”均为“求简单函数的导数”的“上位”要素,
故答案为:3
点评:本题主要考查了结构图,解题的关键弄清综合法属于直接证明,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=ax-a-x+2(a>0,且a≠1),若g(2014)=a,则f(-2015)=(  )
A、2
B、2-2015-22015
C、22015-22015
D、a2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={x||x-1|≥2},N={x|x2-4x≥0},则M∩N(  )
A、{x|x≤0或x≥3}
B、{x|x≤0或x≥4}
C、{x|x≤-1或x≥3}
D、{x|x≤-1或x≥4}

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=(m2-1)x2+(m-1)x+(n+2)为奇函数,则m,n的值为(  )
A、m=1,n=2
B、m=-1,n=2
C、m=±1,n=-2
D、m=±1,n∈R

查看答案和解析>>

科目:高中数学 来源: 题型:

一条直线的倾斜角的正弦值为
3
2
,则此直线的斜率是(  )
A、
3
3
B、
3
C、
π
2
D、±
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如表定义函数f(x):
x12345
f(x)54312
对于数列{an},a1=4,an=f(an-1),n=2,3,4,…,则a2014的值是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

新城建设中某项工程,由甲、乙两工程队合作10天可完成.已知甲工程队单独施工比乙工程队单独施工多用15天完成此项工程.甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元.
(1)求甲、乙两工程队单独完成此项工程各需要多少天?
(2)这项工程由甲工程队单独施工a天后,再由甲、乙两工程队合作施工完成剩下的工程.如果总工期不能超过24天,并且施工费不超过32万元,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
=(2,4),
b
=(m,-1).
(1)若
a
b
,求实数m的值;
(2)若|
a
+
b
|=5,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,已知(a2012-1)3+2014a2012=0,a33-3a32+2017a3=4029,则下列结论正确的是(  )
A、S2014=2014,a2012<a3
B、S2014=2014,a2012>a3
C、S2014=2013,a2012<a3
D、S2014=2013,a2012>a3

查看答案和解析>>

同步练习册答案