精英家教网 > 高中数学 > 题目详情
已知集合A={x|0<x+3≤9},B={x|b-3<x<b+7},M={x|x2-2x-24≤0且|x|<5},全集U=R.
(1)求A∩M; 
(2)若B∪(CUM)=R,求实数b的取值范围.
考点:交、并、补集的混合运算,交集及其运算
专题:集合
分析:(1)求出M中x的范围确定出M,求出A与M的交集即可;
(2)由M及全集U求出M的补集,根据B与M并集为R列出关于b的不等式组,求出不等式组的解集即可确定出b的范围.
解答: 解:(1)由A中不等式解得:-3<x≤6,即A={x|-3<x≤6},
由M中的不等式变形得:(x-6)(x+4)≤0,且-5<x<5,
解得:-4≤x<5,即M={x|-4≤x<5},
则A∩M={x|-3<x<5};
(2)∵M={x|-4≤x<5},全集U=R,
∴∁UM={x|x<-4或x≥5},
∵B={x|b-3<x<b+7},且B∪(∁UM)=R,
b-3<-4
b+7≥5

解得:-2≤b<-1,
则实数b的取值范围是[-2,-1).
点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的中心为原点O,长轴在x轴上,短半轴长为
6
2
,离心率e=
10
5
,左、右焦点分别为F1、F2
(Ⅰ)求该椭圆的方程;
(Ⅱ)过F1作直线l交椭圆于P、Q两点(直线l不过原点O),若椭圆上存在点E,使得四边形OPEQ为平行四边形,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(2-a)(x-1)-2lnx,g(x)=ex-x+1.(a为常数,e为自然对数的底,e≈2.71828)
(Ⅰ)当a=1时,求f(x)的单调区间;
(Ⅱ)若函数f(x)在区间(0,
1
2
)上无零点,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a、b、c是实数,试比较a2+b2+c2与ab+bc+ca的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两高射炮同时向同一目标射击,已知甲击中目标的概率为0.6,乙击中目标的概率为0.5.
(Ⅰ)求甲、乙同时击中目标的概率.
(Ⅱ)求目标被击中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

动圆E过点F(1,0),且与直线x=-1相切,圆心E的轨迹是曲线C.
(1)求曲线C的方程;
(2)过点Q(4,2)的任意一条不过点P(4,4)的直线与曲线C交于A,B两点,直线AB与直线y=x+4交于点M,记直线PA,PB,PM的斜率分别为k1,k2,k3,问是否存在实数λ,使得k1+k2=λk3恒成立?若存在,求出λ的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个命题中,真命题的是
 
(写出所有正确的序号).
①若f(x)=2f(2-x)-3x+2(x∈R),则f(x)在点P(1,f(1))处的切线方程为x+y-2=0;
②若对?n∈N*,F(n)>n+1可以推出F(n+1)>n+2,那么F(5)≤6可以推出F(4)≤5;
③若a+b+c>0,ab+bc+ac>0,abc>0,则a>0,b>0,c>0;
④已知A(7,0),B(-7,0),C(2,-12),椭圆过A,B两点且以C为其一个焦点,则椭圆的另一个焦点的轨迹为双曲线;
⑤方程(x2+3y2-9)
x+y-1
=0表示的曲线是一条直线和一个椭圆.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△AOB中,点P是AB的中垂线上的一点,|
AO
|=3,|
BO
|=2,则
.
OP
•(
.
OA
-
.
OB
)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:通过以“直”代“曲”无限逼近的方法求曲边梯形的面积的步骤是
 
、近似代替、
 
、取极限.

查看答案和解析>>

同步练习册答案