精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
a2
+
y2
b2
=1  (a>b>0)
的离心率是
3
2

(1)证明:a=2b;
(2)设点P为椭圆上的动点,点A(0,
3
2
)
,若|
AP
|
的最大值是
7
,求椭圆的方程.
分析:(1)根据离心率为
c
a
=
3
2
以及c2=a2-b2,即可证明结论.
(2)设P(x,y)由/
.
AP
/的最大值为
7
,求得b的值,从而求得椭圆方程.
解答:解:(1)证明:设椭圆
x2
a2
+
y2
b2
=1  (a>b>0)
的半焦距为c.
因为椭圆的离心率是
3
2
,所以 
c2
a2
=
a2-b2
a2
=1-
b2
a2
=
3
4
,即a=2b.      
(2)设点P(x,y).
|
AP
|2=x2+(y-
3
2
)2=a2(1-
y2
b2
)+y2-3y+
9
4
=4b2-3y2-3y+
9
4
=-3(y+
1
2
)2+4b2+3
,其中-b≤y≤b.
①若b<
1
2
2,则当y=-b3时,|
AP
|
4取得最大值.
由题设,(
7
)2=(b+
3
2
)2
b=
7
-
3
2
1
2
,这与b<
1
2
矛盾.             
②若b≥
1
2
,则当y=-
1
2
时,|
AP
|
取得最大值.
由题设,(
7
)2=4b2+3
,解得b=1,从而a=2.
故椭圆方程为
x2
4
+y2=1
点评:本题主要考查椭圆的基本性质,并渗透了向量、函数最值等问题,此题要注意对b的范围进行分类讨论,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦点分别为F1,F2,左顶点为A,若|F1F2|=2,椭圆的离心率为e=
1
2

(Ⅰ)求椭圆的标准方程,
(Ⅱ)若P是椭圆上的任意一点,求
PF1
PA
的取值范围
(III)直线l:y=kx+m与椭圆相交于不同的两点M,N(均不是长轴的顶点),AH⊥MN垂足为H且
AH
2
=
MH
HN
,求证:直线l恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左焦点F(-c,0)是长轴的一个四等分点,点A、B分别为椭圆的左、右顶点,过点F且不与y轴垂直的直线l交椭圆于C、D两点,记直线AD、BC的斜率分别为k1,k2
(1)当点D到两焦点的距离之和为4,直线l⊥x轴时,求k1:k2的值;
(2)求k1:k2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率是
3
2
,且经过点M(2,1),直线y=
1
2
x+m(m<0)
与椭圆相交于A,B两点.
(1)求椭圆的方程;
(2)当m=-1时,求△MAB的面积;
(3)求△MAB的内心的横坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•威海二模)已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为e=
6
3
,过右焦点做垂直于x轴的直线与椭圆相交于两点,且两交点与椭圆的左焦点及右顶点构成的四边形面积为
2
6
3
+2

(Ⅰ)求椭圆的标准方程;
(Ⅱ)设点M(0,2),直线l:y=1,过M任作一条不与y轴重合的直线与椭圆相交于A、B两点,若N为AB的中点,D为N在直线l上的射影,AB的中垂线与y轴交于点P.求证:
ND
MP
AB
2
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右焦点为F,过F作y轴的平行线交椭圆于M、N两点,若|MN|=3,且椭圆离心率是方程2x2-5x+2=0的根,求椭圆方程.

查看答案和解析>>

同步练习册答案