| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 实数x,y满足x2-xy+y2=1,可得1+$(\frac{x+y}{2})^{2}$≥1+xy=x2+y2≥$\frac{(x+y)^{2}}{2}$,即可得出.
解答 解:∵实数x,y满足x2-xy+y2=1,
∴1+$(\frac{x+y}{2})^{2}$≥1+xy=x2+y2≥$\frac{(x+y)^{2}}{2}$,当且仅当x=y=$\frac{\sqrt{2}}{2}$时取等号(-$\frac{\sqrt{2}}{2}$舍去).
化为:(x+y)2≤4,
则x+y的最大值为2.
故选:B.
点评 本题考查了重要不等式的性质及其应用,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2x-4y+7=0 | B. | 2x+3y-5=0 | C. | 2x-3y+5=0 | D. | 3x+2y-5=0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com