精英家教网 > 高中数学 > 题目详情
8.函数$y=\frac{1}{3}{(\frac{1}{8})^x}-{(\frac{1}{2})^x}+1$在x∈[-1,1]上的值域是[$\frac{1}{3},\frac{5}{3}$].

分析 令$(\frac{1}{2})^{x}=t$换元,求出t的范围,然后利用导数求函数g(t)=$\frac{1}{3}{t}^{3}-t+1$的最值得答案.

解答 解:由$y=\frac{1}{3}{(\frac{1}{8})^x}-{(\frac{1}{2})^x}+1$,令$(\frac{1}{2})^{x}=t$,
∵x∈[-1,1],∴t=$(\frac{1}{2})^{x}∈[\frac{1}{2},2]$.
原函数化为g(t)=$\frac{1}{3}{t}^{3}-t+1$.
g′(t)=t2-1.
由t2-1=0,得t=-1(舍),或t=1.
当t∈($\frac{1}{2},1$)时,g′(t)<0,当t∈(1,2)时,g′(t)>0.
∴当t=1时,g(t)有极小值为g(1)=$\frac{1}{3}$.
又g($\frac{1}{2}$)=$\frac{13}{24}$,g(2)=$\frac{5}{3}$.
∴函数$y=\frac{1}{3}{(\frac{1}{8})^x}-{(\frac{1}{2})^x}+1$在x∈[-1,1]上的值域是[$\frac{1}{3},\frac{5}{3}$].
故答案为:[$\frac{1}{3},\frac{5}{3}$].

点评 本题考查复合函数的单调性,考查了换元法及利用导数求函数的最值,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.设i 是虚数单位,复数$\frac{2i}{1+i}$对应的点与原点的距离是(  )
A.2B.$\sqrt{2}$C.2$\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知抛物线y=x2-4x+1.将此抛物线沿x轴方向向左平移4个单位长度,得到一条新的抛物线.
(1)求平移后的抛物线解析式.
(2)若直线y=m与这两条抛物线有且只有四个交点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.边长为5,7,8的三角形的最大角与最小角的和为(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{3π}{4}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.f(x)=$\left\{\begin{array}{l}-\frac{2}{x},x<0\\ 3+log_2x,x>0\end{array}$若f(x)=2,则x=(  )
A.-1B.$\frac{1}{2}$C.-1或1D.-1或$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)已知tanα=3,计算$\frac{4sinα-2cosα}{5cosα+3sinα}$的值
(2)已知$cosα=-\frac{4}{5}$,且α为第三象限角,求sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.一个几何体的三视图如图所示,则该几何体的表面积和体积分别为2$\sqrt{7}$+3π、$\frac{2\sqrt{3}}{3}$+$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知集合A={x|2≤x<7},B={x|5<x<9},C={x|x<a}.
(1)求A∪B;
(2)求(∁RA)∩B;
(3)若A∩C≠∅,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.若三角形的一个顶点是A(2,1),两条角平分线所在的直线的方程为2x-y+3=0和x+y-2=0,求BC所在直线的方程.

查看答案和解析>>

同步练习册答案