精英家教网 > 高中数学 > 题目详情
如图,在边长为2的正方形ABCD中,E,F分别是AB,BC的中点,将△ADE,△CDF分别沿DE,DF折起,使A,C两点重合于点A′.
(Ⅰ)求证:平面A′DE⊥平面A′EF;
(Ⅱ)求三棱锥A′-DEF的体积.
考点:棱柱、棱锥、棱台的体积,平面与平面垂直的判定
专题:证明题
分析:(Ⅰ)折叠前后不变的是,A′D⊥A′E,A′D⊥A′F,得到A′D⊥平面A′EF,从而证明平面A′DE⊥平面A′EF;
(Ⅱ)将求三棱锥A′-DEF的体积转化成求三棱锥D-A′EF的体积,再进一步代入计算.
解答: 解:(Ⅰ)折叠前,AD⊥AE,CD⊥CF,
折叠后,A′D⊥A′E,A′D⊥A′F,
又∵A′E∩A′F=A′,
∴A′D⊥平面A′EF,
∵A′D?平面A′DE,
∴平面A′DE⊥平面A′EF.
(Ⅱ)∵E,F分别是AB,BC的中点,
∴AE=BE=BF=1,EF=
2

折叠后,A′E=A′F=1,
∴A′E2+A′F2=EF2,∴A′E⊥A′F.
SAEF=
1
2
A′E×A′F
=
1
2
×1×1=
1
2

由(Ⅰ),知A′D⊥平面A′EF,
VA-DEF=VD-AEF=
1
3
SAEF•A′D
=
1
3
×
1
2
×2
=
1
3
点评:在几何体的体积求解过程中,等体积法是经常用到的方法之一,除此之外,还有公式、割补法等常用方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在工商管理学中,MRP指的是物质需要计划,基本MRP的体系结构如图所示.从图中能看出影响基本MRP的主要因素有(  )个.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1,F2是椭圆
x2
24
+
y2
49
=1的两个焦点,P是椭圆上的点且|PF1|:|PF2|=4:3,则△PF1F2的面积为(  )
A、24
B、26
C、22
2
D、24
2

查看答案和解析>>

科目:高中数学 来源: 题型:

用反证法证明命题:“若实系数一元二次方程ax2+bx+c=0(a≠0)有实数根,那么b2-4ac≥0”时,下列假设正确的是(  )
A、假设b2-4ac≤0
B、假设b2-4ac<0
C、假设b2-4ac≥0
D、假设b2-4ac>0

查看答案和解析>>

科目:高中数学 来源: 题型:

某地区试行高考自主招生考试改革:在高中三学年中举行5次统一测试,学生如果通过其中2次测试即可获得足够学分升上大学继续学习,不用参加其余的测试,而每个学生最多也只能参加5次测试.假设某学生每次通过测试的概率都是
1
3
,每次测试通过与否相互独立.规定:若前4次都没有通过测试,则第5次不能参加测试.
(1)求该学生考上大学的概率;
(2)求该生参加考试次数X的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A={x2-3x+2<0},B={x∈R|x>a或x<-a},全集U=R,则当a为何值时A?B成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log2(x+a).
(Ⅰ)当a=1时,若f(x)+f(x-1)>0成立,求x的取值范围;
(Ⅱ)若定义在R上奇函数g(x)满足g(x+2)=-g(x),且当0≤x≤1时,g(x)=f(x),求g(x)在[-3,-1]上的解析式,并写出g(x)在[-3,3]上的单调区间(不必证明);
(Ⅲ)对于(Ⅱ)中的g(x),若关于x的不等式g(
t-2x
8+2x+3
)≥g(-
1
2
)在R上恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦点为F(c,0),上顶点为B,离心率为
1
2
,圆F:(x-c)2+y2=a2与x轴交于E、D两点.
(Ⅰ)求
|BD|
|BE|
的值;
(Ⅱ)若c=1,过点B与圆F相切的直线l与C的另一交点为A,求△ABD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2+3ax+a2-3,(x<0)
2ex-(x-a)2+3,(x>0)
,a∈R.
(1)若函数y=f(x)在x=1处取得极值,求a的值;
(2)若函数y=f(x)的图象上存在两点关于原点对称,求a的范围.

查看答案和解析>>

同步练习册答案