分析 把a值代入3a+3-a,然后利用对数的运算性质化简求值;根据题意求得sin(α+$\frac{π}{6}$)=$\frac{4}{5}$,再根据sin(α-$\frac{π}{12}$)=sin[(α+$\frac{π}{6}$)-$\frac{π}{4}$],再利用两角差的正弦公式计算求得结果.
解答 解:∵a=log97=$lo{g}_{3}\sqrt{7}$,∴3a+3-a=${3}^{lo{g}_{3}\sqrt{7}}+{3}^{lo{g}_{3}\frac{\sqrt{7}}{7}}$=$\sqrt{7}+\frac{\sqrt{7}}{7}=\frac{8\sqrt{7}}{7}$;
∵α为锐角,cos(α+$\frac{π}{6}$)=$\frac{3}{5}$为正数,
∴α+$\frac{π}{6}$是锐角,sin(α+$\frac{π}{6}$)=$\frac{4}{5}$,
∴sin(α-$\frac{π}{12}$)=sin[(α+$\frac{π}{6}$)-$\frac{π}{4}$]
=sin(α+$\frac{π}{6}$)cos$\frac{π}{4}$-cos(α+$\frac{π}{6}$)sin$\frac{π}{4}$=$\frac{4}{5}$×$\frac{\sqrt{2}}{2}$-$\frac{3}{5}$×$\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}}{10}$.
故答案为:$\frac{{8\sqrt{7}}}{7}$;$\frac{{\sqrt{2}}}{10}$.
点评 本题考查对数的运算性质,着重考查了两角和与差的正弦公式,考查了三角函数中的恒等变换应用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 函数y=sinx,x∈[0,2π]是奇函数 | |
| B. | 函数y=2sin($\frac{π}{6}$-2x)在区间[-$\frac{π}{6},\frac{π}{3}$]上单调递减 | |
| C. | 函数y=2sin($\frac{π}{3}-2x$)-cos($\frac{π}{6}+2x$)(x∈R)的一条对称轴方程是x=$\frac{π}{6}$ | |
| D. | 函数y=sinπx•cosπx的最小正周期为2,且它的最大值为1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | bc(b+c)≤8 | B. | bc(b+c)>8 | C. | 12≤abc≤24 | D. | 6≤abc≤12 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $1-\frac{{\sqrt{3}}}{2}$ | B. | $\sqrt{3}-1$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com