分析 由图知,要求的面积有两部分:
①三角形的内部被圆滚过的部分是个三角形,且与原三角形相似,已知了原三角形的周长和面积,可求得原三角形的内切圆半径,进而可得三角形内部被圆滚过部分的三角形的内切圆半径,即可得到两个三角形的相似比,根据相似三角形的性质可求得此三角形的周长和面积;
②三角形边界的三个角的面积;连接单位圆的圆心和原三角形的三顶点,先求得构成的6个小直角三角形的面积,而3个扇形正好构成一个圆,由此可得原三角形边界三个角的面积;
综合①②的面积,即可得所求的值.
解答
解:如图.
设△ABC的内切圆半径为R,△DEF的内切圆半径为r;
依题意有:$\frac{1}{2}$×84×R=210,即R=5;
易知:△DEF∽△ABC,且r:R=4:5,
∴C△DEF=$\frac{4}{5}$C△ABC=67.2;
易知:被圆滚过的三角形内部的三角形也和△ABC相似;
且其内切圆半径为:R-2=3,即其面积=$(\frac{3}{5})^{2}$S△ABC=75.6;
由图知:S四边形AHDG=2S△AGD=AG•1=AG,同理S四边形PEQB=BQ,S四边形CNFM=CM;
∴S四边形AHDG+S四边形PEQB+S四边形CNFM=AG+CM+BQ=$\frac{1}{2}$(C△ABC-C△DEF)=8.4;
而S扇形DHG+S扇形PEQ+S扇形FMN=S单位圆=π,
∴所求的面积=75.6+8.4-π=84-π.
故答案为:84-π.
点评 此题主要考查的是图形面积的求法,涉及到切线的性质、扇形面积的计算方法、相似三角形以及三角形内切圆半径的求法等知识;需要注意的有两点:
①被圆滚过的三角形内部的三角形与原三角形相似,②原三角形边界的三个扇形正好构成一个单位圆.
科目:高中数学 来源: 题型:选择题
| A. | (0,$\sqrt{2}$) | B. | (0,$\frac{\sqrt{34}}{4}$] | C. | (0,$\frac{3}{2}$] | D. | (0,$\sqrt{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 青年人 | 中年人 | 合计 | |
| 经常使用微信 | |||
| 不经常使用微信 | |||
| 合计 |
| P(k2≥k) | 0.010 | 0.001 |
| k | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com