精英家教网 > 高中数学 > 题目详情
13.某中学高三年级周六一天有补课.其中上午4节,下午2节.要排语文、数学、英语、物理、化学、生物课各一节,要求上午第一节课不排生物,数学必须排在上午,则不同排法共有(  )
A.384种B.408种C.480种D.600种

分析 根据题意,本题可看做是6个不同的元素填6个空的问题,条件限制是生物不排第一节,数学排上午,所以解答时分数学在第一节和数学不在第一节两类,结合分步计算与分类计算原理即可求解.

解答 解:根据题意,要求上午第一节课不排体育,数学必须排在上午,
则分2种情况讨论:
①数学排在上午第一节,则其余5节任意排列,有A55=120种排法
②数学不排在上午第一节,则需要从其余的三节选一节排数学,有A31=3种,
然后安排生物,除上午第一节与数学已选的一节之外,还有4个位置可选,有A41=4种排法,
其余的4门课程进行全排列,安排在剩余4个位置,其排法有A44=24种,
由分步计数原理可得,共有3×4×24=288
所以这天课表的不同排法种数为120+288=408;
故选B.

点评 本题考查了排列、组合既简单的计数问题,解答的关键是正确分类,求解时做到不重不漏,其次注意优先分析受到限制的元素.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.数列{xn}满足x1=1,x2=$\frac{2}{3}$,且$\frac{1}{{x}_{n-1}}$+$\frac{1}{{x}_{n+1}}$=$\frac{2}{{x}_{n}}$(n≥2),则xn等于$\frac{2}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数y=loga($\frac{a}{x}$-1)在区间(0,$\frac{2}{5}$]上单调递增,则实数a的取值范围是($\frac{2}{5}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.不等式$\frac{1}{x+1}$≥1的解集是(-1,0].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.“开门大吉”是某电视台推出的游戏节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示.
(1)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称是否与年龄有关;说明你的理由;(下面的临界值表供参考)
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d)
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
(2)现计划在这次场外调查中按年龄段用分层抽样的方法选取6名选手,并抽取3名幸运选手,求3名幸运选手中至少有一人在20~30岁之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.用红,黄两种颜色给如图所示的一列方格染色(可以只染一种颜色)要求相邻的两格不都染成红色,则不同的染色方法数为(  )
A.7B.28C.34D.42

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知p:x2+4mx+1=0有两个不等的负数根,q:函数f(x)=-(m2-m+1)x在(-∞,+∞)上是增函数.若p或q为真,p且q为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<π)在一个周期内的图象如图所示,则此函数的解析式为(  )
A.y=2sin(2x+$\frac{π}{3}$)B.y=2sin($\frac{x}{2}$-$\frac{π}{3}$)C.y=2sin(2x-$\frac{π}{3}$)D.y=2sin(2x+$\frac{2π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.由0,1,2,3,4,5这6个数字可以组成52个没有重复数字的三位偶数.

查看答案和解析>>

同步练习册答案