精英家教网 > 高中数学 > 题目详情
已知平面向量
a
=(
3
,1),
b
=(
1
2
3
2
).若存在不同时为零的实数k和t,使
x
=
a
+(t2-3)
b
y
=-k
a
+t
b
x
y

(1)试求函数关系式k=f(t);
(2)若t∈(0,+∞)时,不等式k≥
1
2
t2+
1
4
mt恒成立,求实数m的取值范围.
考点:函数恒成立问题,函数解析式的求解及常用方法,数量积判断两个平面向量的垂直关系
专题:函数的性质及应用
分析:(1)根据平面向量的数量积关系即可试求函数关系式k=f(t);
(2)利用参数分离法将不等式k≥
1
2
t2+
1
4
mt恒成立进行转化,利用二次函数的图象和性质,即可求实数m的取值范围.
解答: 解:(1)由题知:|
a
|=2,|
b
|=1,
a•
b
=0
-----------------------(2分)
x
y
,则
x
y
=[
a
+(t2-3)
b
]•(-k
a
+t
b
)=0

整理可得:-k
a
2
+t
a
b
-k(t2-3)
a
b
+t(t2-3)
b
2
=-k
a
2
+t(t2-3)
b
2
=-4k+t(t2-3)=0

k=
1
4
t(t2-3)(t≠0)

(2)∵当t∈(0,+∞)时,不等式k≥
1
2
t2+
1
4
mt恒成立

1
4
t(t2-3)≥
1
2
t2+
1
4
mt在t∈(0,+∞)上恒成立

即m≤t2-2t-3=(t-1)2-4在t∈(0,+∞)上恒成立,
∴m≤-4,
即实数m的取值范围是(-∞,-4].
点评:本题主要考查函数恒成立问题已经数量积的应用,利用参数分离法是解决函数恒成立问题的基本方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=(1+x)n=C
 
0
n
+C
 
1
n
x+C
 
2
n
x2+…+C
 
n-1
n
xn-1+C
 
n
n
xn(n是正整数),利用赋值法解决下列问题:
(1)求S1=C
 
0
n
+C
 
1
n
+C
 
2
n
+…+C
 
n
n

(2)n为偶数时,求S2=C
 
1
n
+C
 
3
n
+C
 
5
n
+…+C
 
n-1
n

(3)n是3的倍数时,求S3=C
 
2
n
+C
 
5
n
+C
 
8
n
+…+C
 
n-1
n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知如图,△ABC是边长为1的正三角形,PA⊥平面ABC,且PA=
6
4
,A点关于平面PBC的对称点为A′,连线AA′交面PBC于O点.
(Ⅰ)求证:PO⊥BC;
(Ⅱ)求线段AA′的长度;
(Ⅲ)求二面角A′-AB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn=-n2,数列{bn}满足:b1=2,bn+1=3bn-t(n-1),已知an+1+bn+1=3(an+bn)对任意n∈N*都成立
(1)求t的值;
(2)设数列{an2+anbn}的前n项的和为Tn,问是否存在互不相等的正整数m,k,r,使得m,k,r成等差数列,且Tm+1,Tk+1,Tr+1成等比数列?若存在,求出m,k,r;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,E、F分别为棱AD、AB的中点.
(1)求证:EF∥平面CB1D1
(2)求异面直线EF与AD1所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,△ABC中,O为外心,三条高AD、BE、CF交于点H,直线ED和AB交于点M,FD和AC交于点N.求证:OB⊥DF.

查看答案和解析>>

科目:高中数学 来源: 题型:

棱长为2的正方体ABCD-A1B1C1D1中,E为C1D1的中点.
①求证:AE⊥DA1
②求异面直线AE与CC1所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
x2+x+1
x2+1
的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|2x-a|-x2是定义在R上的偶函数,若方程f(x)=m恰有两个实根,则实数m的取值范围是
 

查看答案和解析>>

同步练习册答案