精英家教网 > 高中数学 > 题目详情
9.观察下列式子:$1+\frac{1}{2^2}<\frac{3}{2}$,$1+\frac{1}{2^2}+\frac{1}{3^2}<\frac{5}{3}$,$1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}<\frac{7}{4}$,…,根据以上式子可以猜想$1+\frac{1}{2^2}+\frac{1}{3^2}+…+\frac{1}{{{{2017}^2}}}<$$\frac{4033}{2017}$.

分析 由题意,根据所给式子,右边分子是2n-1,分母是n,可得结论.

解答 解:由题意,根据所给式子,右边分子是2n-1,分母是n,可得结论为,$\frac{4033}{2017}$
故答案为:$\frac{4033}{2017}$

点评 本题考查归纳推理,考查学生分析解决问题的能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.如图(1),五边形ABCDE中,ED=EA,AB∥CD,CD=2AB,∠EDC=150°.如图(2),将△EAD沿AD折到△PAD的位置,得到四棱锥P-ABCD.点M为线段PC的中点,且BM⊥平面PCD.

(1)求证:平面PAD⊥平面PCD;
(2)若直线PC与AB所成角的正切值为$\frac{1}{2}$,设AB=1,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知圆C:(x-1)2+(y-4)2=10和点M(5,t),若圆C上存在两点A,B,使得MA⊥MB,则实数t的取值范围是[2,6].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图是某组合体的三视图,则内部几何体的体积的最大值为(  )
A.$\frac{5}{2}(\sqrt{2}-1)π$B.$\frac{25}{4}(3-2\sqrt{2})π$C.$25(3-2\sqrt{2})π$D.$\frac{125}{6}(5\sqrt{2}-7)π$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知正实数x,y,则$f(x,y)=|x-y|+\frac{16}{x}+{y^2}$的最小值为$\frac{31}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)=$\frac{bx+1}{{{{(ax+1)}^2}}}(x≠-\frac{1}{a},a>0)$,且f(1)=$\frac{1}{4}$,f(-2)=1
(1)求函数f(x) 的表达式;
(2)已知数列{xn} 的项满足xn=(1-f(1))(1-f(2))…(1-f(n)),猜想{xn} 的通项公式,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=x2+x+2cosx,若f'(x)是f(x)的导函数,则函数f'(x)的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=x3-12x+1在区间[-3,3]上的最大值与最小值分别为M,m,则M-m=32.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.一个盒子里装有相同大小的红球、白球共30个,其中白球4个.从中任取两个,则概率为$\frac{{C_{26}^1C_4^1+C_4^2}}{{C_{30}^2}}$的事件是(  )
A.没有白球B.至少有一个红球C.至少有一个白球D.至多有一个白球

查看答案和解析>>

同步练习册答案