精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=x2+x+2cosx,若f'(x)是f(x)的导函数,则函数f'(x)的图象大致是(  )
A.B.C.D.

分析 由题可得f′(x)=2x-2sinx+1,判断导函数的奇偶性,利用特殊值的函数值推出结果即可.

解答 解:函数f(x)=x2+x+2cosx,
∴f′(x)=2x+1-2sinx=2(x-sinx)+1,
而y=2(x-sinx)是奇函数,
故f′(x)的图象是y=2(x-sinx)的图象向上平移1个单位,
导函数是奇函数,
∵x∈(0,$\frac{π}{2}$),x>sinx>0,
∴B、C、D不正确.
故选:A.

点评 本题考查函数的图象,考查同学们对函数基础知识的把握程度以及数形结合的思维能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.大厦一层有A,B,C,D四部电梯,3人在一层乘坐电梯上楼,则其中2人恰好乘坐同一部电梯的概率为(  )
A.$\frac{9}{16}$B.$\frac{7}{16}$C.$\frac{9}{32}$D.$\frac{7}{32}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知b≥a>0,若存在实数x,y满足0≤x≤a,0≤y≤b,(x-a)2+(y-b)2=x2+b2=a2+y2,则$\frac{b}{a}$的最大值为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.观察下列式子:$1+\frac{1}{2^2}<\frac{3}{2}$,$1+\frac{1}{2^2}+\frac{1}{3^2}<\frac{5}{3}$,$1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}<\frac{7}{4}$,…,根据以上式子可以猜想$1+\frac{1}{2^2}+\frac{1}{3^2}+…+\frac{1}{{{{2017}^2}}}<$$\frac{4033}{2017}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知$\frac{π}{4}<α<\frac{π}{2}$,cosα+sinα=$\frac{{\sqrt{5}}}{2}$,则tanα=$4+\sqrt{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知曲线C:f(x)=x3-x+3
(1)利用导数的定义求f(x)的导函数f'(x);
(2)求曲线C上横坐标为1的点处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数y=cosx+2|cosx|,x∈[0,2π]与函数y=k的图象有四个交点,则k∈(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知变量x,y之间具有线性相关关系,其散点图如图所示,回归直线l的方程为$\stackrel{∧}{y}$=ax+b则下列说法正确的是(  )
A.a>0,b<0B.a>0,b>0C.a<0,b<0D.a<0,b>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图所示程序框图(算法流程图)的输出结果是(  )
A.3B.123C.38D.11

查看答案和解析>>

同步练习册答案