精英家教网 > 高中数学 > 题目详情
16.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知2c=3b,sinA=2sinB,则$\frac{cosA}{cosB}$的值为-$\frac{2}{7}$.

分析 利用正弦定理得出三角形三边的比例关系,利用余弦定理求出cosA,cosB得出比值.

解答 解:∵2c=3b,∴b:C=2:3.
∵sinA=2sinB,∴a=2b,
∴a:b;c=4:2:3.
设a=4,b=2,c=3,
则cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=-$\frac{1}{4}$,cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{7}{8}$.
∴$\frac{cosA}{cosB}$=-$\frac{1}{4}×\frac{8}{7}$=-$\frac{2}{7}$.
故答案为:$-\frac{2}{7}$.

点评 本题考查了正弦定理,余弦定理,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知a+2i=(b+i)•i(a,b∈R,其中i为虚数单位),则|a+bi|=(  )
A.3B.1C.$\sqrt{5}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求证:$\frac{1+sinα-cosα}{1+sinα+cosα}$=$\frac{1-cosα}{sinα}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知某回归分析中,模型A的残差图的带状区域宽度比模型B的残差图的带状区域宽度窄,则在该回归分析中拟合精度较高的模型是模型A.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知圆C1:(x+2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9,A,B分别是圆C1和圆C2上的动点,点P是y轴上的动点,则|PB|-|PA|的最大值为(  )
A.$\sqrt{2}$+4B.5$\sqrt{2}-4$C.$\sqrt{2}$D.$\sqrt{26}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在锐角△ABC中,角A,B,C的对边分别是a,b,c,若a=$\sqrt{7}$,b=3,$\sqrt{7}$sinB+sinA=2$\sqrt{3}$.
(Ⅰ)求角A的大小;
(Ⅱ)求sin(2B+$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知△ABC中,角A、B、C所对的边分别为a,b,c,若△ABC的面积是$\frac{1}{2}$c2,则$\frac{{a}^{2}+{b}^{2}+{c}^{2}}{ab}$的最大值为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知$\overrightarrow{a}$,$\overrightarrow{b}$是任意的两个向量,则下列关系式中不恒成立的是(  )
A.|$\overrightarrow{a}$|+|$\overrightarrow{b}$|≥|$\overrightarrow{a}$-$\overrightarrow{b}$|B.|$\overrightarrow{a}$•$\overrightarrow{b}$|≤|$\overrightarrow{a}$|•|$\overrightarrow{b}$|
C.($\overrightarrow{a}$-$\overrightarrow{b}$)2=$\overrightarrow{a}$-2$\overrightarrow{a}$•$\overrightarrow{b}$+$\overrightarrow{b}$2D.($\overrightarrow{a}$-$\overrightarrow{b}$)3=$\overrightarrow{a}$3-3$\overrightarrow{a}$2•$\overrightarrow{b}$+3$\overrightarrow{a}$•$\overrightarrow{b}$2-$\overrightarrow{b}$3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知i为虚数单位,复数z满足(1-i)z=2i2016,则复数z的虚部为(  )
A.-1B.1C.iD.-i

查看答案和解析>>

同步练习册答案