精英家教网 > 高中数学 > 题目详情
15.设x,y满足约束条件:$\left\{\begin{array}{l}{x≥1}\\{y≥\frac{1}{2}x}\\{2x+y≤10}\end{array}\right.$的可行域为M.若存在正实数a,使函数y=2asin($\frac{x}{2}$+$\frac{π}{4}$)cos($\frac{x}{2}$+$\frac{π}{4}$)的图象经过区域M中的点,则这时a的取值范围是$[\frac{1}{2cos1},+∞)$.

分析 画出约束条件的可行域,判断区域的中点的范围,然后推出关系式,即可求解a的范围.

解答 解:(1)由$\left\{{\begin{array}{l}{x=1}\\{y=\frac{1}{2}x}\end{array}}\right.$,得$\left\{{\begin{array}{l}{x=1}\\{y=\frac{1}{2}}\end{array}}\right.$,∴$A(1,\frac{1}{2})$,
由$\left\{{\begin{array}{l}{x=1}\\{2x+y=10}\end{array}}\right.$,得$\left\{{\begin{array}{l}{x=1}\\{y=8}\end{array}}\right.$,∴B(1,8).
由$\left\{{\begin{array}{l}{2x+y=10}\\{y=\frac{1}{2}x}\end{array}}\right.$,得$\left\{{\begin{array}{l}{x=4}\\{y=2}\end{array}}\right.$,∴C(4,2),可行域M为如图△ABC,
∵a>0,$y=2asin(\frac{x}{2}+\frac{π}{4})cos(\frac{x}{2}+\frac{π}{4})=asin(x+\frac{π}{2})=acosx$过区域M中的点,
而区域中1≤x≤4,
又∵a>0,函数y=acosx图象过点$(\frac{π}{2},0),1<\frac{π}{2}<4$,
当$x∈({\frac{π}{2},\frac{3π}{2}})$时,$y<0,\frac{3π}{2}>4$,
∴满足y=acosx过区域M中的点,
只须图象与射线$x=1,(y≥\frac{1}{2})$有公共点.
∴只须x=1时,$acos1≥\frac{1}{2}$,∴$a≥\frac{1}{2cos1}$,
∴所求a的取值范围是$a∈[{\frac{1}{2cos1},+∞})$.
故答案为:$[\frac{1}{2cos1},+∞)$.

点评 本题主要考查线性规划的应用,利用三角函数的公式将函数进行化简,以及利用数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知i为虚数单位,复数z=$\frac{a+2i}{1-i}$为纯虚数,则复数|z-1|=(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{1}{2}$C.$\sqrt{5}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{(sinx-cosx)sin2x}{sinx}$,求:
(1)f($\frac{π}{4}$)的值;
(2)函数f(x)的最小正周期和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)已知x+x-1=3,求x2+x-2的值;
(2)计算lg$\sqrt{5}$+lg$\sqrt{20}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=$\sqrt{3}$,且|$\overrightarrow{a}$-2$\overrightarrow{b}$|=1,则$\overrightarrow{a}$•$\overrightarrow{b}$=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列五个命题:
①直线l的斜率k∈[-1,1],则直线l的倾斜角的范围是$α∈[{-\frac{π}{4},\frac{π}{4}}]$;
②直线l:y=kx+1与过A(-1,5),B(4,-2)两点的线段相交,则k≤-4或$k≥-\frac{3}{4}$;
③如果实数x,y满足方程(x-2)2+y2=3,那么$\frac{y}{x}$的最大值为$\sqrt{3}$;
④直线y=kx+1与椭圆$\frac{x^2}{5}+\frac{y^2}{m}=1$恒有公共点,则m的取值范围是m≥1;
⑤方程x2+y2+4mx-2y+5m=0表示圆的充要条件是$m<\frac{1}{4}$或m>1;
正确的是(  )
A.②③B.③④C.②⑤D.②③⑤

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知四棱锥P-ABCD如图(1),它的三视图如图(2)所示,其中PA⊥平面ABCD,△PBC为正三角形.

(1)求证:AC⊥平面PAB;
(2)求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设△ABC内角A,B,C的对边分别是a,b,c.若△ABC的面积为2,AB边上的中线长为$\sqrt{2}$,且b=acosC+csinA,则△ABC中最长边的长为4或2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设f(x)=$\left\{\begin{array}{l}{2,x∈(-∞,1]}\\{lo{g}_{81}x,x∈(1,+∞)}\end{array}\right.$,则满足$f(x)=\frac{1}{4}$的x的值为3.

查看答案和解析>>

同步练习册答案