精英家教网 > 高中数学 > 题目详情
已知函数f(x)=a(x-1)2+lnx.a∈R.
(Ⅰ)当a=-
1
4
时,求函数y=f(x)的单调区间;
(Ⅱ)当x∈[1,+∞)时,函数y=f(x)图象上的点都在不等式组
x≥1
y≤x-1
所表示的区域内,求a的取值范围.
(Ⅰ)a=-
1
4
,f(x)=-
1
4
(x-1)2+lnx
(x>0),
f′(x)=-
1
2
x+
1
2
+
1
x
=
-x2+x+2
2x
=
-(x-2)(x+1)
2x

当0<x<2时,f'(x)>0,f(x)在(0,2)上单调递增;
当x>2时,f'(x)<0,f(x)在(0,2)上单调递减;
所以函数的单调递增区间是(0,2),单调递减区间是(2,+∞). 
(Ⅱ)由题意得a(x-1)2+lnx≤x-1对x∈[1,+∞)恒成立,
设g(x)=a(x-1)2+lnx-x+1,x∈[1,+∞),则有g(x)max≤0,x∈[1,+∞)成立.
求导得g′(x)=
2ax2-(2a+1)x+1
x
=
(2ax-1)(x-1)
x

①当a≤0时,若x>1,则g'(x)<0,所以g(x)在[1,+∞)单调递减,g(x)max=g(1)=0≤0成立,得a≤0;
②当a≥
1
2
时,x=
1
2a
≤1
,g(x)在x∈[1,+∞)上单调递增,所以存在x>1,使g(x)>g(1)=0,此时不成立;    
③当0<a<
1
2
时,x=
1
2a
>1,则f(x)在[1,
1
2a
]上单调递减
[
1
2a
,+∞)单调递增

则存在
1
a
∈[
1
2a
,+∞)
,有g(
1
a
)=a(
1
a
-1)2+ln
1
a
-
1
a
+1=-lna+a-1>0
,所以不成立;
综上得a≤0.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案