4£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-1-t}\\{y=t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÔÚÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2£¨3+sin2¦È£©=12£®
£¨1£©ÇóÖ±ÏßlµÄÆÕͨ·½³ÌºÍÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÈôÖ±ÏßlÓëÇúÏßC½»ÓÚ²»Í¬µÄÁ½µãA¡¢B£¬½»xÖáÓÚµãN£¬µãAÔÚxÖáµÄÉÏ·½£¬MΪÏÒABµÄÖе㣬Çó|AN|-|BN|+|MN|+|AN|•|BN|£®

·ÖÎö £¨1£©ÀûÓÃÈýÖÖ·½³ÌµÄת»¯·½·¨£¬¼´¿ÉÇóÖ±ÏßlµÄÆÕͨ·½³ÌºÍÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-1-\frac{\sqrt{2}}{2}m}\\{y=\frac{\sqrt{2}}{2}m}\end{array}\right.$£¨mΪ²ÎÊý£©£¬´úÈëÍÖÔ²·½³Ì£¬ÕûÀí¿ÉµÃ7m2+6$\sqrt{2}$m-18=0£¬ÀûÓòÎÊýµÄ¼¸ºÎÒâÒ壬¿ÉµÃ½áÂÛ£®

½â´ð ½â£º£¨1£©Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-1-t}\\{y=t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÆÕͨ·½³ÌΪx+y+1=0£»
ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2£¨3+sin2¦È£©=12£¬Ö±½Ç×ø±ê·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1£»
£¨2£©Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-1-\frac{\sqrt{2}}{2}m}\\{y=\frac{\sqrt{2}}{2}m}\end{array}\right.$£¨mΪ²ÎÊý£©£¬´úÈëÍÖÔ²·½³Ì£¬ÕûÀí¿ÉµÃ7m2+6$\sqrt{2}$m-18=0£¬
ÉèA£¬B¶ÔÓ¦µÄ²ÎÊýΪm1£¬m2£¬Ôòm1+m2=-$\frac{6\sqrt{2}}{7}$£¬m1m2=-$\frac{18}{7}$£¬
¡àM¶ÔÓ¦µÄ²ÎÊýΪ-$\frac{3\sqrt{2}}{7}$£¬¡àM£¨-$\frac{4}{7}$£¬$\frac{3}{7}$£©£¬
¡ßN£¨-1£¬0£©£¬¡à|MN|=$\frac{3\sqrt{2}}{7}$
¡à|AN|-|BN|+|MN|+|AN|•|BN|=$\sqrt{\frac{72}{49}+\frac{72}{7}}$+$\frac{3\sqrt{2}}{7}$+$\frac{18}{7}$=6+$\frac{3\sqrt{2}}{7}$£®

µãÆÀ ±¾Ì⿼²éÈýÖÖ·½³ÌµÄת»¯£¬¿¼²é²ÎÊý·½³ÌµÄÔËÓã¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Ãæ»ýΪ4$\sqrt{3}$µÄµÈ±ßÈý½ÇÐÎABCÖУ¬DÊÇAB±ßÉÏ¿¿½üBµÄÈýµÈ·Öµã£¬Ôò$\overrightarrow{CD}$•$\overrightarrow{AB}$=$\frac{8}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®º¯Êý$f£¨x£©=Asin£¨¦Øx+\frac{¦Ð}{6}£©£¨A£¾0£¬¦Ø£¾0£©$µÄ×î´óֵΪ2£¬ËüµÄ×îСÕýÖÜÆÚΪ2¦Ð£®
£¨¢ñ£©Çóº¯Êýf£¨x£©µÄ½âÎöʽ£»
£¨¢ò£©Èôg£¨x£©=cosx•f£¨x£©£¬Çóg£¨x£©ÔÚÇø¼ä$[-\frac{¦Ð}{6}£¬\frac{¦Ð}{4}]$ÉϵÄ×î´óÖµºÍ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖªÁ÷³ÌͼÈçͼËùʾ£¬¸Ã³ÌÐòÔËÐкó£¬ÎªÊ¹Êä³öµÄf£¨x£©ÖµÎª16£¬ÔòÑ­»·ÌåµÄÅжϿòÄÚ¢Ù´¦Ó¦£¨¡¡¡¡£©
A£®a£¾3£¿B£®a¡Ý3£¿C£®a¡Ü3£¿D£®a£¼3£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªa¡¢b¡¢c·Ö±ðΪ¡÷ABCµÄÄÚ½ÇA¡¢B¡¢CµÄ¶Ô±ß£¬btanA=2asinB£®
£¨1£©ÇóA£»
£¨2£©Èôa=$\sqrt{7}$£¬2b-c=4£¬Çó¡÷ABCµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Ä³¼¯ÍŹ«Ë¾½ñÄê²úÖµ20ÒÚÔª£¬Èç¹ûƽ¾ùÄêÔö³¤8%£¬ÎʶàÉÙÄêºóÄÜ´ïµ½40ÒÚÔª£¿£¨1g1.08¡Ö0.0334£¬1g2¡Ö0.301£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖª1+i=$\frac{i}{z}$£¬ÔòÔÚ¸´Æ½ÃæÄÚ£¬¸´ÊýzËù¶ÔÓ¦µÄµãÔÚ£¨¡¡¡¡£©
A£®µÚÒ»ÏóÏÞB£®µÚ¶þÏóÏÞC£®µÚÈýÏóÏÞD£®µÚËÄÏóÏÞ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®É躯Êýf£¨x£©=|2x+3|+|x-1|£®
£¨1£©½â²»µÈʽf£¨x£©£¾4£»
£¨2£©Èô?x¡Ê£¨-¡Þ£¬-$\frac{3}{2}$£©£¬²»µÈʽa+1£¼f£¨x£©ºã³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Èçͼ£¬ËÄÀâ×¶P-ABCDÖУ¬Æ½ÃæPAC¡ÍÆ½ÃæABCD£¬AC=2BC=2CD=4£¬¡ÏACB=¡ÏACD=60¡ã£®
£¨1£©Ö¤Ã÷£ºCP¡ÍBD£»
£¨2£©ÈôAP=PC=2$\sqrt{2}$£¬Çó¶þÃæ½ÇA-BP-CµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸