精英家教网 > 高中数学 > 题目详情
9.某集团公司今年产值20亿元,如果平均年增长8%,问多少年后能达到40亿元?(1g1.08≈0.0334,1g2≈0.301).

分析 可设x年后达到y亿元,从而建立x,y间的关系式为y=20•1.08x,据题意,解不等式20•1.08x≥40即可求出x的值.

解答 解:设x年后达到y亿元,则:
y=20(1+0.08)x
由20•1.08x≥40得:1.08x≥2;
∴xlg1.08≥lg2;
∴$x≥\frac{lg2}{lg1.08}≈\frac{0.301}{0.0334}≈9.012$;
∴10年后达到40亿元.

点评 考查建立函数关系式解决实际问题的方法,以及对数式的运算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.在极坐标系中,圆C的圆心在极轴上,且过极点和点$({3\sqrt{2},\frac{π}{4}})$,求圆C的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知奇函数f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,点M的坐标为(1,0)且△MNE为等腰直角三角形,当A的最大值为(  )
A.1B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若等比数列{an}的各项均为正数,且a3-a1=2,则a5的最小值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=-1-t}\\{y=t}\end{array}\right.$(t为参数),在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ2(3+sin2θ)=12.
(1)求直线l的普通方程和曲线C的直角坐标方程;
(2)若直线l与曲线C交于不同的两点A、B,交x轴于点N,点A在x轴的上方,M为弦AB的中点,求|AN|-|BN|+|MN|+|AN|•|BN|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设等差数列{an}的前n项和为Sn,Sm-1=13,Sm=0,Sm+1=-15.其中m∈N*且m≥2,则数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和的最大值为(  )
A.$\frac{24}{143}$B.$\frac{1}{143}$C.$\frac{24}{13}$D.$\frac{6}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知平面下列$\overrightarrow{a}$=(-2,3),$\overrightarrow{b}$=(1,2),向量λ$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{b}$垂直,则实数λ的值为(  )
A.$\frac{4}{13}$B.-$\frac{4}{13}$C.$\frac{5}{4}$D.-$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=3,BC=DC=2,若E,F分别是线段DC和BC上的动点,则$\overrightarrow{AC}•\overrightarrow{EF}$的取值范围是[-4,6].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=alnx,g(x)=x+$\frac{1}{x}$+f′(x)
(Ⅰ)讨论h(x)=g(x)-f(x)的单调性;
(Ⅱ)若h(x)的极值点为3,设方程f(x)+mx=0的两个根为x1,x2,且$\frac{{x}_{2}}{{x}_{1}}$≥ea,求证:$\frac{f′({x}_{1}+{x}_{2})+m}{f′({x}_{1}-{x}_{2})}$>$\frac{6}{5}$.

查看答案和解析>>

同步练习册答案