精英家教网 > 高中数学 > 题目详情
18.如图,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=3,BC=DC=2,若E,F分别是线段DC和BC上的动点,则$\overrightarrow{AC}•\overrightarrow{EF}$的取值范围是[-4,6].

分析 依题意,设$\overrightarrow{EC}$=λ$\overrightarrow{AB}$(0≤λ≤$\frac{2}{3}$),$\overrightarrow{CF}$=μ$\overrightarrow{BC}$(-1≤μ≤0),由$\overrightarrow{AC}$=$\overrightarrow{AB}$+$\overrightarrow{BC}$,$\overrightarrow{EF}$=$\overrightarrow{EC}$+$\overrightarrow{CF}$,可求得$\overrightarrow{AC}•\overrightarrow{EF}$=($\overrightarrow{AB}$+$\overrightarrow{BC}$)•($\overrightarrow{EC}$+$\overrightarrow{CF}$)=λ${\overrightarrow{AB}}^{2}$+μ${\overrightarrow{BC}}^{2}$=9λ+4μ;再由0≤λ≤$\frac{2}{3}$,-1≤μ≤0,即可求得-4≤9λ+4μ≤6,从而可得答案.

解答 解:∵AB∥DC,∠ABC=90°,AB=3,BC=DC=2,且E,F分别是线段DC和BC上的动点,
∴$\overrightarrow{EC}$=λ$\overrightarrow{AB}$(0≤λ≤$\frac{2}{3}$),
$\overrightarrow{CF}$=μ$\overrightarrow{BC}$(-1≤μ≤0),
又$\overrightarrow{AC}$=$\overrightarrow{AB}$+$\overrightarrow{BC}$,$\overrightarrow{EF}$=$\overrightarrow{EC}$+$\overrightarrow{CF}$,
∴$\overrightarrow{AC}•\overrightarrow{EF}$=($\overrightarrow{AB}$+$\overrightarrow{BC}$)•($\overrightarrow{EC}$+$\overrightarrow{CF}$)
=($\overrightarrow{AB}$+$\overrightarrow{BC}$)•(λ$\overrightarrow{AB}$+μ$\overrightarrow{BC}$)
=λ${\overrightarrow{AB}}^{2}$+μ${\overrightarrow{BC}}^{2}$
=9λ+4μ.
∵0≤λ≤$\frac{2}{3}$,∴0≤9λ≤6①,
又-1≤μ≤0,∴-4≤4μ≤0②,
①+②得:-4≤9λ+4μ≤6.
即$\overrightarrow{AC}•\overrightarrow{EF}$的取值范围是[-4,6],
故答案为:[-4,6].

点评 本题考查平面向量数量积的坐标运算,设$\overrightarrow{EC}$=λ$\overrightarrow{AB}$(0≤λ≤$\frac{2}{3}$),$\overrightarrow{CF}$=μ$\overrightarrow{BC}$(-1≤μ≤0),并求得$\overrightarrow{AC}•\overrightarrow{EF}$=9λ+4μ是关键,考查平面向量加法的三角形法与共线向量基本定理的应用,考查运算求解能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知x,y∈R,那么“x>y”的充分必要条件是(  )
A.2x>2yB.lgx>lgyC.$\frac{1}{x}>\frac{1}{y}$D.x2>y2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某集团公司今年产值20亿元,如果平均年增长8%,问多少年后能达到40亿元?(1g1.08≈0.0334,1g2≈0.301).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知实数4,m,9构成一个等比数列,则圆锥曲线$\frac{{x}^{2}}{m}$+y2=1的焦距为2$\sqrt{5}$或2$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=|2x+3|+|x-1|.
(1)解不等式f(x)>4;
(2)若?x∈(-∞,-$\frac{3}{2}$),不等式a+1<f(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=asinx+bcosx(a≠0)在$x=\frac{π}{4}$处取得最小值,则函数$f(\frac{3π}{4}-x)$是(  )
A.偶函数且它的图象关于点(π,0)对称
B.偶函数且它的图象关于点$(\frac{3π}{2},0)$对称
C.奇函数且它的图象关于点(π,0)对称
D.奇函数且它的图象关于点$(\frac{3π}{2},0)$对称

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知等差数列{an}的前n项和为Sn,且a3=7,S4=24,数列{bn}的前n项和Tn=n2+an
(1)求数列{an},{bn}的通项公式;
(2)求数列$\left\{{\frac{b_n}{2^n}}\right\}$的前n项和Bn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<$\frac{π}{2}$)的图象(部分)如图所示,则f(x)的解析式是(  )
A.f(x)=2sin(πx+$\frac{π}{6}$)B.f(x)=2sin(2πx+$\frac{π}{6}$)C.f(x)=2sin(πx+$\frac{π}{3}$)D.f(x)=2sin(2πx+$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一个三棱锥的顶点在空间直角坐标系中的坐标O-xyz分别为(0,0,2),(2,2,0),(1,2,1),(2,2,2),画出该三棱锥三视图中的俯视图时,以xoy平面为投影面,得到的俯视图为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案