ÔÚʵÊý¼¯RÖУ¬ÎÒÃǶ¨ÒåµÄ´óС¹ØÏµ¡°£¾¡±ÎªÈ«ÌåʵÊýÅÅÁËÒ»¸ö¡°Ðò¡±£¬ÀàËÆµÄ£¬ÎÒÃÇÔÚÆ½ÃæÏòÁ¿¼¯D={
a
|
a
=£¨x£¬y£©£¬x¡ÊR£¬y¡ÊR}ÉÏÒ²¿ÉÒÔ¶¨ÒåÒ»¸ö³ÆÎª¡°Ðò¡±µÄ¹ØÏµ£¬¼ÇΪ¡°£¾¡±£®¶¨ÒåÈçÏ£º¶ÔÓÚÈÎÒâÁ½¸öÏòÁ¿
a1
=£¨x1£¬y1£©£¬
a2
=£¨x2£¬y2£©£¬
a1
£¾
a2
µ±ÇÒ½öµ±¡°x1£¾x2¡±»ò¡°x1=x2ÇÒy1£¾y2¡±°´ÉÏÊö¶¨ÒåµÄ¹ØÏµ¡°£¾¡±£¬¸ø³öÏÂÁÐËĸöÃüÌ⣺
¢ÙÈô
e1
=£¨1£¬0£©£¬
e2
=£¨0£¬1£©£¬
0
=£¨0£¬0£©Ôò
e1
£¾
e2
£¾
0
£»
¢ÚÈô
a1
£¾
a2
£¬
a2
£¾
a3
£¬Ôò
a1
£¾
a3
£»
¢ÛÈô
a1
£¾
a2
£¬Ôò¶ÔÓÚÈÎÒâ
a
¡ÊD£¬
a1
+
a
£¾
a2
+
a
£»
¢Ü¶ÔÓÚÈÎÒâÏòÁ¿
a
£¾
0
£¬
0
=(0£¬0)
£¬Èô
a1
£¾
a2
£¬Ôò
a
a1
£¾
a
a2
£®
ÆäÖÐÃüÌâÕýÈ·µÄÐòºÅΪ£¨¡¡¡¡£©
A¡¢¢Ù¢ÚB¡¢¢Ù¢Û
C¡¢¢Ù¢Ú¢ÛD¡¢¢Ù¢Ú¢Û¢Ü
¿¼µã£ºÀà±ÈÍÆÀí
רÌâ£ºÍÆÀíºÍÖ¤Ã÷
·ÖÎö£º¸ù¾ÝÒÑÖªÌõ¼þÖУ¬
a1
?
a2
µ±ÇÒ½öµ±¡°x1£¾x2¡±»ò¡°x1=x2ÇÒy1£¾y2¡±£®°´ÉÏÊö¶¨ÒåµÄ¹ØÏµ¡°?¡±£¬Åжϸ÷¸öÑ¡ÏîÊÇ·ñÕýÈ·£¬´Ó¶øµÃ³ö½áÂÛ£®
½â´ð£º ½â£º¶ÔÓÚÈÎÒâÁ½¸öÏòÁ¿
a1
=£¨x1£¬y1£©£¬
a2
=£¨x2£¬y2£©£¬
a1
?
a2
µ±ÇÒ½öµ±¡°x1£¾x2¡±
»ò¡°x1=x2 ÇÒy1£¾y2¡±£¬
¶ÔÓÚ¢Ù£¬Èô
e1
=£¨1£¬0£©£¬
e2
=£¨0£¬1£©£¬
0
=£¨0£¬0£©£¬
Ôò
e1
£¾
e2
£¬ÇÒ
e2
£¾
0
£¬¹Ê¢ÙÕýÈ·£®
¶ÔÓÚ¢Ú£¬ÉèÏòÁ¿
a1
=£¨x1£¬y1£©£¬
a2
=£¨x2£¬y2£©£¬
a3
=£¨x3£¬y3£©£¬
Èô
a1
£¾
a2
£¬
a2
£¾
a3
£¬
ÔòÓС°x1£¾x2¡±»ò¡°x1=x2ÇÒy1£¾y2¡±£¬¡°x2£¾x3¡±»ò¡°x2=x3ÇÒy2£¾y3¡±£®
¹ÊÓС°x1£¾x3¡±»ò¡°x1=x3ÇÒy1£¾y3¡±£®¹ÊÓÐ
a1
£¾
a3
£®
¶ÔÓÚ¢Û£¬Èô
a1
£¾
a2
£¬Ôò¶ÔÓÚÈÎÒâ
a
¡ÊD£¬
Éè
a
=£¨x£¬y£©£¬
a1
=£¨x1£¬y1£©£¬
a2
=£¨x2£¬y2£©£¬
¡ß¡°x1£¾x2¡±»ò¡°x1=x2ÇÒy1£¾y2¡±£¬
¡à¡°x+x1£¾x+x2¡±»ò¡°x+x1=x+x2ÇÒy+y1£¾y+y2¡±£¬
¡à£¨
a1
+
a
£©£¾£¨
a2
+
a
£©£¬¹Ê¢ÛÕýÈ·£®
¶ÔÓڢܣ¬Éè
a
=£¨x£¬y£©£¬
a1
=£¨x1£¬y1£©£¬
a2
=£¨x2£¬y2£©£¬
ÓÉ
a
£¾
0
£¬µÃ¡°x£¾0¡±»ò¡°x=0ÇÒy£¾0¡±£»
ÓÉ
a1
£¾
a2
£¬µÃ¡°x1£¾x2¡±»ò¡°x1=x2ÇÒy1£¾y2¡±£»
¿ÉµÃ¡°x=0ÇÒy£¾0¡±ÇÒ¡°x1£¾x2ÇÒy1£¼y2¡±£¬¹ÊÓС°xx1=xx2ÇÒyy1£¼yy2¡±£¬
ËùÒÔ
a
a1
£¾
a
a2
²»³ÉÁ¢£¬ËùÒԢܲ»ÕýÈ·£¬
¹Ê´ð°¸Îª£º¢Ù¢Ú¢Û£®
¹ÊÑ¡£ºC£®
µãÆÀ£º±¾ÌâÖØµã¿¼²éÁ˺ÏÇéÍÆÀíÖеÄÀà±ÈÍÆÀí£¬ÕÒ×¼Àà±ÈµãÊǽâÌâµÄ¹Ø¼ü£®ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ö´ÐÐÈçͼµÄ³ÌÐò¿òͼ£¬Èç¹ûÊäÈëa=4£¬ÄÇôÊä³öµÄnµÄֵΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨ÎĿƣ©Èçͼ£¬ÈýÀâÖùABC-A1B1C1D1£¬ÖУ¬²àÃæBB1C1CΪÁâÐΣ¬B1CµÄÖеãΪO£¬ÇÒAO¡ÍÆ½ÃæBB1C1C£®
£¨1£©Ö¤Ã÷£ºB1C¡ÍAB£»
£¨2£©ÈôAC¡ÍAB1£¬¡ÏCBB1=60¡ã£¬BC=1£¬ÇóÈýÀâ×¶A-BB1CµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªF1£¨-c£¬0£©£¬F2£¨c£¬0£©·Ö±ðÊÇÍÖÔ²E£º
x2
2
+
y2
b2
=1£¨b£¾0£©µÄ×ó¡¢ÓÒ½¹µã¡¢ÍÖÔ²µÄÀëÐÄÂÊe=
2
2
£®
£¨¢ñ£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨¢ò£©ÒÑÖªÖ±Ïßy=kx+mÓëÍÖÔ²EÓÐÇÒÖ»ÓÐÒ»¸ö¹«¹²µãP£¬ÇÒÓëÖ±Ïßx=2ÏཻÓÚµãQ£¬ÇóÖ¤£ºÒÔÏß¶ÎPQΪֱ¾¶µÄÔ²ºã¹ý¶¨µãF2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ë«ÇúÏßC1£º
x2
a2
-
y2
b2
=1µÄ×ó×¼ÏßΪl£¬×ó½¹µãºÍÓÒ½¹µã·Ö±ðΪF1¡¢F2£¬Å×ÎïÏßC2µÄ×¼ÏßΪl£¬½¹µãΪF2£¬C1ÓëC2µÄÒ»¸ö½»µãΪp£¬Ïß¶ÎPF2µÄÖеãΪM£¬OÊÇ×ø±êÔ­µã£¬Ôò
|OF1|
|PF1|
-
|OM|
|PF2|
=£¨¡¡¡¡£©
A¡¢-1
B¡¢1
C¡¢-
1
2
D¡¢
1
2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýg£¨x£©=x2+ln£¨x+a£©£¬ÆäÖÐaΪ³£Êý£®
£¨1£©ÌÖÂÛº¯Êýg£¨x£©µÄµ¥µ÷ÐÔ£»
£¨2£©Èôg£¨x£©´æÔÚÁ½¸ö¼«Öµµãx1£¬x2£¬ÇóÖ¤£ºÎÞÂÛʵÊýaȡʲôֵ¶¼ÓÐ
g(x1)+g(x2)
2
£¾g(
x1+x2
2
)
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ1£¬ÒÑÖªÕý·½ÐÎABCD£¬E¡¢F·Ö±ðÊÇAB¡¢CDÖе㣬½«¡÷ADEÑØDEÕÛÆð£¬Èçͼ2ʾ£¬ÇóÖ¤£ºBF¡ÎÆ½ÃæADE£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬Ä³É½ÇøµÄÁ½¸ö¹¤³§A¡¢BÖ±Ïß¾àÀë14km£¬¹¤³§C¾àA¡¢BÖ±Ïß¾àÀë¶¼ÊÇ25km£¬EΪÏß¶ÎABµÄÖе㣬ÔÚÏß¶ÎCEÉÏÑ¡½¨±äµçÕ¾D£¬²¢´ÓµãD´¦ÆÌÉèµ½¹¤³§A£¬B£¬CµÄÊäµçÏßDA£¬DB£¬DC£®
£¨1£©±äµçÕ¾D½¨Ôں䦣¬¿ÉʹÆÌÉèµÄ×ÜÊäµçÏß³¤×î¶Ì£¿
£¨2£©ÒòÉ½Çø¸´ÔÓÌõ¼þ£¬Ï£ÍûÆÌÉèµÄÈý¶ÎÊäµçÏßÖÐ×îÔ¶Ò»¶ÎµÄ³¤¶ÈΪ×îС£¬ÄÇô±äµçÕ¾D½¨Ôں䦣¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÈýÀâ×¶µÄÖ±¹Ûͼ¼°Æä¸©ÊÓͼÓë²àÊÓͼÈçͼ£¬¸©ÊÓͼÊDZ߳¤Îª2µÄÕýÈý½ÇÐΣ¬²àÊÓͼÊÇÓÐÒ»Ö±½Ç±ßΪ2µÄÖ±½ÇÈý½ÇÐΣ¬Ôò¸ÃÈýÀâ×¶µÄÕýÊÓÍ¼Ãæ»ýΪ£¨¡¡¡¡£©
A¡¢
2
B¡¢2
C¡¢4
D¡¢
3
2

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸