精英家教网 > 高中数学 > 题目详情
19.已知一等比数列的前三项依次是x,2x+2,3x+3.那么-$\frac{27}{2}$是该等比数列的第几项(  )
A.2B.3C.4D.5

分析 一等比数列的前三项依次是x,2x+2,3x+3.可得(2x+2)2=x(3x+3),解得x,再利用通项公式即可得出.

解答 解:∵一等比数列的前三项依次是x,2x+2,3x+3.∴(2x+2)2=x(3x+3),解得x=-4,或-1(舍去).
∴首项为-4,公比为$\frac{2×(-4)+2}{-4}$=$\frac{3}{2}$.
∴an=-4×$(\frac{3}{2})^{n-1}$.
由-$\frac{27}{2}$=-4×$(\frac{3}{2})^{n-1}$,解得n=4.
故选:C.

点评 本题考查了等比数列的通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.给出下列四个结论:
①若n组数据(x1,y1)…(xn,yn)的散点都在y=-2x+1上,则相关系数r=-1;
②由直线x=$\frac{1}{2}$,x=2,曲线y=$\frac{1}{x}$及x轴围成的图形的面积是2ln2;
③已知随机变量ξ服从正态分布N(1,σ2),P(ξ≤4)=0.79,则P(ξ≤-2)=0.21;
④设回归直线方程为$\widehat{y}$=2-2.5x,当变量x增加一个单位时,$\widehat{y}$平均增加2个单位.
其中错误结论的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若P(A)=$\frac{3}{4}$,P(B|A)=$\frac{1}{2}$,则P(AB)等于(  )
A.$\frac{2}{3}$B.$\frac{3}{8}$C.$\frac{1}{3}$D.$\frac{5}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.学习雷锋精神的前半年内某单位餐厅的固定餐椅经常有损坏,学习雷锋精神时全修好,单位对学习雷锋精神前后各半年内餐椅的损坏情况做了一个大致统计,具体数据如表:
损坏餐椅数未损坏餐椅数总 计
学习雷锋精神前50150200
学习雷锋精神后30170200
总  计80320400
(1)求学习雷锋精神前后餐椅损坏的百分比分别是多少?并初步判断损毁餐椅数量与学校雷锋精神是否有关?
(2)请说明是否有97.5%的把握认为损毁餐椅数量与学习雷锋精神有关?
p(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.0763.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=lg(2-x)-lg(2+x).
(1)求函数f(x)的定义域.
(2)判断函数f(x)的奇偶性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.对两个变量的相关系数r,下列说法中正确的是(  )
A.|r|越大,相关程度越小B.|r|越小,相关程度越大
C.|r|趋近于0时,没有非线性相关关系D.|r|越接近于1时,线性相关程度越强

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)=ex-1-ax.
(1)讨论函数y=f(x)的单调性
(2)若对于任意的实数x,都有f(x)≥1-a,求a的值;
(3)设g(x)=ex-1+$\frac{1}{2}$x2-2x+m,对任意实数x,都有g(x)>0,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知圆台的上、下底面半径分别是1cm、3cm,且侧面积等于两底面积之和,则圆台的母线长为$\frac{5}{2}$ cm.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数$f(x)=ln(x-1)+\sqrt{2-x}$的定义域为(1,2].

查看答案和解析>>

同步练习册答案