精英家教网 > 高中数学 > 题目详情
4.对两个变量的相关系数r,下列说法中正确的是(  )
A.|r|越大,相关程度越小B.|r|越小,相关程度越大
C.|r|趋近于0时,没有非线性相关关系D.|r|越接近于1时,线性相关程度越强

分析 根据题意,由相关系数r的意义,分析选项,即可得答案.

解答 解:根据题意,两个变量之间的相关系数,r的绝对值越接近于1,
表面两个变量的线性相关性越强,
r的绝对值越接近于0,表示两个变量之间几乎不存在线性相关,
故选:D.

点评 本题考查相关系数r的意义,关键是掌握相关系数r的统计意义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.如图,一个平面图形的斜二测画法的直观图是一个边长为$\sqrt{2}a$的正方形,则原平面图形的面积为(  )
A.$\frac{{\sqrt{2}}}{4}{a^2}$B.$\sqrt{2}{a^2}$C.$2\sqrt{2}{a^2}$D.$4\sqrt{2}{a^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某媒体对“男女同龄退休”这一公众关注的问题进行了民意调查,表是在某单位得到的数据(人数).
赞成反对合计
5611
11314
合计16925
(I )能否有90%以上的把握认为对这一问题的看法与性别有关?
(II)从反对“男女同龄退休”的甲、乙等6名男士中选出2人进行陈述,求甲、乙至少有一人被选出的概率.
附:
P(K2≥k)0.250.150.10
k1.3232.0722.706
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设等差数列{an}满足$\frac{{{{sin}^2}{a_4}{{cos}^2}{a_7}-{{sin}^2}{a_7}{{cos}^2}{a_4}}}{{sin({a_5}+{a_6})}}=1$,公差d∈(-1,0),当且仅当n=9时,数列{an}的前n项和Sn取得最大值,求该数列首项a1的取值范围(  )
A.$(\frac{7π}{6},\frac{4π}{3})$B.[$\frac{7π}{6}$,$\frac{4π}{3}$]C.($\frac{4π}{3}$,$\frac{3π}{2}$)D.f(x)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知一等比数列的前三项依次是x,2x+2,3x+3.那么-$\frac{27}{2}$是该等比数列的第几项(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.将两枚质地均匀的骰子各掷一次,设事件A={两个点数之和大于8},B={出现一个5点},则P(B|A)=(  )
A.$\frac{1}{3}$B.$\frac{5}{18}$C.$\frac{1}{6}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知等差数列{an},{bn}的前n项和分别为Sn和Tn,若$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n}{3n+1}$,则$\frac{{a}_{5}}{{b}_{5}}$=(  )
A.$\frac{16}{25}$B.$\frac{9}{14}$C.$\frac{15}{23}$D.$\frac{2}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,已知a2+b2+$\sqrt{2}ab={c^2}$,则角C=135°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知a∈R,函数$f(x)={2^{\frac{1}{x}+a}}$.
(1)当a=1时,解不等式f(x)>4;
(2)若f(x)>2-x在x∈[2,3]恒成立,求a的取值范围;
(3)若关于x的方程f(x)-2(a-4)x+2a-5=0在区间(-2,0)内的解恰有一个,求a的取值范围.

查看答案和解析>>

同步练习册答案