精英家教网 > 高中数学 > 题目详情
16.已知等差数列{an},{bn}的前n项和分别为Sn和Tn,若$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n}{3n+1}$,则$\frac{{a}_{5}}{{b}_{5}}$=(  )
A.$\frac{16}{25}$B.$\frac{9}{14}$C.$\frac{15}{23}$D.$\frac{2}{7}$

分析 由等差数列的性质可得:$\frac{{a}_{5}}{{b}_{5}}$=$\frac{{S}_{9}}{{T}_{9}}$,即可得出.

解答 解:由等差数列的性质可得:$\frac{{a}_{5}}{{b}_{5}}$=$\frac{\frac{9({a}_{1}+{a}_{9})}{2}}{\frac{9({b}_{1}+{b}_{9})}{2}}$=$\frac{{S}_{9}}{{T}_{9}}$=$\frac{2×9}{3×9+1}$=$\frac{9}{14}$.
故选:B.

点评 本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.若集合A={1,2},N={1,2,3},则满足A∪X=N的集合X的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.学习雷锋精神的前半年内某单位餐厅的固定餐椅经常有损坏,学习雷锋精神时全修好,单位对学习雷锋精神前后各半年内餐椅的损坏情况做了一个大致统计,具体数据如表:
损坏餐椅数未损坏餐椅数总 计
学习雷锋精神前50150200
学习雷锋精神后30170200
总  计80320400
(1)求学习雷锋精神前后餐椅损坏的百分比分别是多少?并初步判断损毁餐椅数量与学校雷锋精神是否有关?
(2)请说明是否有97.5%的把握认为损毁餐椅数量与学习雷锋精神有关?
p(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.0763.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.对两个变量的相关系数r,下列说法中正确的是(  )
A.|r|越大,相关程度越小B.|r|越小,相关程度越大
C.|r|趋近于0时,没有非线性相关关系D.|r|越接近于1时,线性相关程度越强

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)=ex-1-ax.
(1)讨论函数y=f(x)的单调性
(2)若对于任意的实数x,都有f(x)≥1-a,求a的值;
(3)设g(x)=ex-1+$\frac{1}{2}$x2-2x+m,对任意实数x,都有g(x)>0,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.一盒中有12个乒乓球,其中9个新的,3个旧的(至少使用过一次),从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X是一个随机变量,其分布列为P(x),则P(X=4)=$\frac{27}{220}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知圆台的上、下底面半径分别是1cm、3cm,且侧面积等于两底面积之和,则圆台的母线长为$\frac{5}{2}$ cm.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知点M的球坐标为(4,$\frac{π}{4}$,$\frac{3π}{4}$),则它的直角坐标为(-2,2,2$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.首项为-12的等差数列,从第10项起开始为正数,则公差d的取值范围是(  )
A.d>$\frac{8}{3}$B.d<3C.$\frac{8}{3}$≤d<3D.$\frac{4}{3}$<d≤$\frac{3}{2}$

查看答案和解析>>

同步练习册答案