精英家教网 > 高中数学 > 题目详情
12.设等差数列{an}满足$\frac{{{{sin}^2}{a_4}{{cos}^2}{a_7}-{{sin}^2}{a_7}{{cos}^2}{a_4}}}{{sin({a_5}+{a_6})}}=1$,公差d∈(-1,0),当且仅当n=9时,数列{an}的前n项和Sn取得最大值,求该数列首项a1的取值范围(  )
A.$(\frac{7π}{6},\frac{4π}{3})$B.[$\frac{7π}{6}$,$\frac{4π}{3}$]C.($\frac{4π}{3}$,$\frac{3π}{2}$)D.f(x)

分析 由已知条件推导出sin(a4-a7)=1,或sin(a4+a7)=0,由仅当n=9时,数列{an}的前n项和Sn取得最大值,推导出8.5<-$\frac{{a}_{1}-\frac{d}{2}}{2×\frac{d}{2}}$<9.5,由此能求出该数列首项a1的取值范围.

解答 解:∵等差数列{an}满足$\frac{{{{sin}^2}{a_4}{{cos}^2}{a_7}-{{sin}^2}{a_7}{{cos}^2}{a_4}}}{{sin({a_5}+{a_6})}}=1$,
∴(sina4cosa7-sina7cosa4)(sina4cosa7+sina7cosa4
=sin(a5+a6)=sin(a4+a7)=sina4cosa7+sina7cosa4
∴sina4cosa7-sina7cosa4=1,或sina4cosa7+sina7cosa4=0
即sin(a4-a7)=1,或sin(a4+a7)=0(舍)
当sin(a4-a7)=1时,
∵a4-a7=-3d∈(0,3),a4-a7=2kπ+$\frac{π}{2}$,k∈Z,
∴-3d=2kπ+$\frac{π}{2}$,d=-$\frac{π}{6}$-$\frac{2k}{3}$π.
∴d=-$\frac{π}{6}$
∵Sn=na1+$\frac{n(n-1)d}{2}$=$\frac{d}{2}$n2+(a1-$\frac{d}{2}$)n,
且仅当n=9时,数列{an}的前n项和Sn取得最大值,
∴8.5<-$\frac{{a}_{1}-\frac{d}{2}}{2×\frac{d}{2}}$<9.5,
∴$\frac{4}{3}$π<a1<$\frac{3π}{2}$
故选:C

点评 本题综合考查了等差数列的通项公式及其性质、三角函数的平方关系和倍角公式、特殊角的三角函数等基础知识与基本技能方法,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.若函数f(x)=log2(x2-2ax+1+a)在(-∞,1]上递减,则实数a的取值范围是(  )
A.[1,2)B.(1,2)C.[1,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在三角形ABC中,角A,B,C所对的边分别是a,b,c,若$\frac{b}{a}+\frac{a}{b}=6cosC$,则$\frac{c^2}{{{a^2}+{b^2}}}$的值是$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=$\left\{\begin{array}{l}{-\sqrt{2}sinx-1,-1≤x≤0}\\{tan(\frac{π}{4}x),0<x≤1}\end{array}\right.$,则f(f(-$\frac{π}{4}$))=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.学习雷锋精神的前半年内某单位餐厅的固定餐椅经常有损坏,学习雷锋精神时全修好,单位对学习雷锋精神前后各半年内餐椅的损坏情况做了一个大致统计,具体数据如表:
损坏餐椅数未损坏餐椅数总 计
学习雷锋精神前50150200
学习雷锋精神后30170200
总  计80320400
(1)求学习雷锋精神前后餐椅损坏的百分比分别是多少?并初步判断损毁餐椅数量与学校雷锋精神是否有关?
(2)请说明是否有97.5%的把握认为损毁餐椅数量与学习雷锋精神有关?
p(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.0763.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.判断下列各组中的两个函数是同一函数的为(  )
(1)${y_1}=\frac{(x+3)(x-5)}{x+3}$,y2=x-5;
(2)${y_1}=\sqrt{x+1}\sqrt{x-1}$,${y_2}=\sqrt{(x+1)(x-1)}$;
(3)f(x)=x,$g(x)=\sqrt{x^2}$;
 (4)f(x)=x,$g(x)=\root{3}{x^3}$;
(5)${f_1}(x)={(\sqrt{2x-5})^2}$,f2(x)=2x-5.
A.(1)(2)B.(2)(3)C.(4)D.(3)(5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.对两个变量的相关系数r,下列说法中正确的是(  )
A.|r|越大,相关程度越小B.|r|越小,相关程度越大
C.|r|趋近于0时,没有非线性相关关系D.|r|越接近于1时,线性相关程度越强

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.一盒中有12个乒乓球,其中9个新的,3个旧的(至少使用过一次),从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X是一个随机变量,其分布列为P(x),则P(X=4)=$\frac{27}{220}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在梯形ABCD中,$\overrightarrow{AB}+3\overrightarrow{CD}=\overrightarrow 0$,则$\overrightarrow{BC}$等于(  )
A.$-\frac{1}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AD}$B.$-\frac{2}{3}\overrightarrow{AB}+\frac{4}{3}\overrightarrow{AD}$C.$\frac{2}{3}\overrightarrow{AB}-\overrightarrow{AD}$D.$-\frac{2}{3}\overrightarrow{AB}+\overrightarrow{AD}$

查看答案和解析>>

同步练习册答案