精英家教网 > 高中数学 > 题目详情
16.已知曲线C的参数方程为$\left\{\begin{array}{l}{x=2+2cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数),在以原点O为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为θ=$\frac{π}{6}$(ρ∈R).
(Ⅰ)求曲线C的极坐标方程;
(Ⅱ)求直线l被曲线C截得的线段长.

分析 (I)曲线C的参数方程为$\left\{\begin{array}{l}{x=2+2cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数),利用cos2θ+sin2θ=1消去参数θ,可得直角坐标方程,利用ρ2=x2+y2,x=ρcosθ即可化为极坐标方程.
(II)把直线l的极坐标方程θ=$\frac{π}{6}$(ρ∈R)代入圆的极坐标方程即可得出.

解答 解:(I)曲线C的参数方程为$\left\{\begin{array}{l}{x=2+2cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数),消去参数θ,可得:(x-2)2+y2=4,
展开为:x2+y2-4x=0,可得极坐标方程:ρ2-4ρcosθ=0,即ρ=4cosθ.
(II)把直线l的极坐标方程θ=$\frac{π}{6}$(ρ∈R)代入圆的极坐标方程可得:ρ=4$cos\frac{π}{6}$=2$\sqrt{3}$.
由于圆与直线都经过原点,因此直线l被曲线C截得的线段长=|OP|=2$\sqrt{3}$.

点评 本题考查了极坐标与直角坐标方程的互化、参数方程化为普通方程、三角函数求值,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=x3-tx2+3x,函数f(x)在区间(1,3)上单调递减,则实数t的取值范围是[5,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,设锐角△ABC的外接圆ω的圆心为O,经过A,O,C三点的圆ω1的圆心为K,且与边AB和BC分别相交于点M和N,现知点L与K关于直线MN对称,证明:BL⊥AC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若实数a满足x+lgx=2,实数b满足x+10x=2,函数f(x)=$\left\{{\begin{array}{l}{ln(x+1)+\frac{a+b}{2},x≤0}\\{{x^2}-2,x>0}\end{array}}$,则关于x的方程f(x)=x解的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.极坐标系中,曲线C1:ρ=2(sinθ+cosθ)与曲线C2:ρ=1交于点 A(ρ1,θ1),B(ρ2,θ2),其中θ1,θ2∈[-π,π).
(I)求ρ12与θ12的值;
(II)求极点O与点A,B组成的三角形面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知tanα=2,求
(1)$\frac{2sin(α-π)3cos(-α)}{4sin(\frac{π}{2}+α)-9cos(α-\frac{3π}{2})}$;
(2)4sin2α-3sinαcosα-5cos2α;
(3)$\frac{1+sin2α}{1+sin2α+cos2α}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=2x3-6x2+1.
(1)求函数f(x)在点(1,f(1))处的切线方程;
(2)求函数f(x)在[-1,3]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知定义在R上的偶函数f(x)的周期是4,当x∈[0,2]时,f(x)=|2x-2|,若g(x)=f(x)-|($\frac{1}{2}$)x-$\frac{1}{2}$|,则当x∈[-12,12]时,函数g(x)的零点个数是(  )
A.6B.12C.24D.13

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=a(x+1)ln(x+1)图象上的点(e2-1,f(e2-1))处的切线与直线x+3y+1=0垂直(e=2.71828…).
(1)求f(x)的单调区间;
(2)证明:当m>n>0时,(1+em)${\;}^{{e}^{n}}$<(1+en)${\;}^{{e}^{m}}$.

查看答案和解析>>

同步练习册答案