精英家教网 > 高中数学 > 题目详情
5.已知定义在R上的偶函数f(x)的周期是4,当x∈[0,2]时,f(x)=|2x-2|,若g(x)=f(x)-|($\frac{1}{2}$)x-$\frac{1}{2}$|,则当x∈[-12,12]时,函数g(x)的零点个数是(  )
A.6B.12C.24D.13

分析 根据函数的周期性和奇偶性求出在一个周期内的解析式,作出两个函数的图象,利用数形结合进行求解即可.

解答 解:∵定义在R上的偶函数f(x)的周期为4,当x∈[0,2]时,f(x)=|2x-2|,
∴当x∈[-2,0],则-x∈[0,2],
则f(-x)=|2-x-2|=f(x),
即f(x)=|2-x-2|,x∈[-2,0],
由g(x)=f(x)-|($\frac{1}{2}$)x-$\frac{1}{2}$|=0,
得f(x)=|($\frac{1}{2}$)x-$\frac{1}{2}$|,
设h(x)=|($\frac{1}{2}$)x-$\frac{1}{2}$|,
作出函数f(x)和h(x)的图象如图:
当x≤0时,
两个函数在[-12,0]内有1个交点,
在[0,4]内两个函数有3个交点,
当x≥4时,两个函数在每个周期内都有4个交点,
此时在[4,12]内有2×4=8个交点,
则在[-12,12]上解的个数为1+3+8=12,
即函数g(x)的零点个数是12,
故选:B.

点评 本题主要考查函数与方程的应用,根据条件求出一个周期的图象,利用数形结合是解决本题的关键.综合性较强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ax4•lnx+bx4-c在x=1处取得极值-3-c.
(1)试求实数a,b的值;
(2)试求函数f(x)的单调区间;
(3)若对任意x>0,不等式f(x)≥-2c2恒成立,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知曲线C的参数方程为$\left\{\begin{array}{l}{x=2+2cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数),在以原点O为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为θ=$\frac{π}{6}$(ρ∈R).
(Ⅰ)求曲线C的极坐标方程;
(Ⅱ)求直线l被曲线C截得的线段长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设函数f(x)=ex-e2x,则f(x)的最小值为-e2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,在圆的内接四边形ABCD中,AC平分∠BAD,EF切⊙O于C点,那么图中与∠DCF相等的角的个数是(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{1}{{2}^{x}-1}$+a是奇函数.
(1)求a的值和函数f(x)的定义域;
(2)用单调性的定义证明:函数f(x)在(0,+∞)上是减函数;
(3)解不等式f(-m2+2m-1)+f(m2+3)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.解方程组:$\left\{\begin{array}{l}{({x}^{2}+1)({y}^{2}+1)=10}\\{(x+y)(xy-1)=3}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ax3+x2-ax(a∈R且a≠0).
(1)若函数f(x)在(-∞,-1)和($\frac{1}{3},-∞$)上是增函数,在(-1,$\frac{1}{3}$)上是减函数,求a的值;
(2)讨论函数g(x)=$\frac{f(x)}{x}-\frac{3}{a}$lnx的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知曲线f(x)=$\left\{\begin{array}{l}{kx-k,x<1}\\{{x}^{2}-4x+3,x≥1}\end{array}\right.$与曲线g(x)=log2x有两个交点,则k的取值范围为(-∞,$\frac{1}{ln2}$).

查看答案和解析>>

同步练习册答案