精英家教网 > 高中数学 > 题目详情
10.在同一坐标系内,函数y=xa(a≠0)和y=ax+$\frac{1}{a}$的图象应是(  )
A.B.C.D.

分析 分类讨论,根据幂函数的单调性和一次函数的单调性和一次函数与y轴的交点坐标,即可排除A,C,D.

解答 解:当a>0时,函数函数y=xa在(0,+∞)为增函数,y=ax+$\frac{1}{a}$为增函数,
且过定点(0,$\frac{1}{a}$),没有选项符合,
当a<0时,函数函数y=xa在(0,+∞)减函数,
y=ax+$\frac{1}{a}$为减函数,且过定点(0,$\frac{1}{a}$),故排除A,C,D.
故选:B.

点评 本题考查了幂函数和一次函数的图象和性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.一个棱锥的三视图如图所示(所有三角形均为直角三角形),则这个棱锥的表面积为(  )
A.30+$\sqrt{2}$B.36C.30+6$\sqrt{2}$D.38

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数y=loga(x+3)-1(a>0,且a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中mn>0,则m2+$\frac{1}{4}$n的最小值为$\frac{3}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.下列各式:
(1)已知loga$\frac{2}{3}$<1,则a>$\frac{2}{3}$;
(2)函数y=2x的图象与函数y=2-x的图象关于y轴对称;
(3)函数f(x)=lg(mx2+mx+1)的定义域是R,则m的取值范围是0≤m<4;
(4)函数y=ln(-x2+x)的递增区间为(-∞,$\frac{1}{2}$]
正确的有(2)(3).(把你认为正确的序号全部写上)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若变量x,y满足约束条件$\left\{\begin{array}{l}{x+y≥1}\\{y-x≤1}\\{x≤1}\end{array}\right.$,则$\frac{y+1}{x}$的最小值是(  )
A.0B.1C.-1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设实数x,y满足约束条件$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-1≥0}\\{x≤3}\end{array}\right.$,则z=3x-2y的最小值为(  )
A.-3B.-2C.8D.13

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD中点,PA⊥底面ABCD,PA=2.
(I)证明:平面PBE⊥平面PAB;
(II)求直线PC与平面PBE所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.点M(x,y)与定点F(3,0)的距离和它到直线l:x=$\frac{25}{3}$的距离之比是$\frac{3}{5}$,则M的轨迹方程是(  )
A.$\frac{x^2}{25}+\frac{y^2}{16}=1$B.$\frac{x^2}{25}+\frac{y^2}{9}=1$C.$\frac{x^2}{25}-\frac{y^2}{16}=1$D.$\frac{x^2}{25}-\frac{y^2}{9}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设等比数列{an}的前n项和为Sn,已知S10=10,S20=30,则S30=70.

查看答案和解析>>

同步练习册答案