精英家教网 > 高中数学 > 题目详情
2.下列所给对象能构成集合的是(  )
A.某校高一(5)班数学成绩非常突出的男生能组成一个集合
B.《数学1(必修)》课本中所有的难题能组成一个集合
C.性格开朗的女生可以组成一个集合
D.圆心为定点,半径为1的圆内的点能组成一个集合

分析 根据集合的定义,利用集合元素的确定性进行判断.

解答 解:A、某校高一(5)班数学成绩非常突出的男生不确定,无法确定集合的元素,不能构成集合,故本选项错误;
B.《数学1(必修)》课本中所有的难题不确定,无法确定集合的元素,不能构成集合,故本选项错误;
C.性格开朗的女生不确定,无法确定集合的元素,不能构成集合,故本选项错误;
D.圆心为定点,半径为1的圆内的点,元素确定,能构成集合,故本选项正确.
故选:D.

点评 本题主要考查集合的概念,利用集合元素的确定性是解决本题的关键,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)是定义在R上的奇函数,当x<0时,f(x)=x2-x-1,则函数f(x)的解析式为f(x)=$\left\{\begin{array}{l}{{x}^{2}-x-1,x<0}\\{0,x=0}\\{-{x}^{2}-x+1,x>0}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.从{$\frac{1}{3}$,$\frac{1}{2}$,2,3}中随机抽取一个数记为a,从{-2,-1,1,2}中随机抽取一个数记为b,则函数y=ax+b的图象经过第三象限的概率是$\frac{3}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知幂函数f(x)=(2m-n)x${\;}^{-{m}^{2}+n+4}$(m,n∈Z)为偶函数,且在区间(0,+∞)上是单调递增函数.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)设g(x)=aex-m(x+2)+2a2-n,若g(x)能取遍(0,+∞)内的所有实数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,已知AB是圆O的直径,直线CD与圆O相切于点C,弦AE的延长线交CD于点D,若∠DAC=∠CAB.
(1)求证:AD⊥CD;
(2)若AD=9,AB=16,求AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设A={x∈Z|x≤6},B={x∈Z|x>1},那么A∩B等于(  )
A.{x|1<x≤6}B.{1,2,3,4,5,6}C.{2,3,4,5,6}D.{2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在一次连环交通事故中,只有一个人需要负主要责任,但在警察询问时,甲说:“主要责任在乙”;乙说:“丙应负主要责任”;丙说“甲说的对”;丁说:“反正我没有责任”.四人中只有一个人说的是真话,则该事故中需要负主要责任的人是甲.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=cos(2x+$\frac{2π}{3}$)+2cos2x.
(Ⅰ)求f(x)的最大值,并写出f(x)取最大值时x取值构成的集合;
(Ⅱ)已知△ABC中,角A,B,C的对边分别为a,b,c,若f(B+C)=$\frac{3}{2}$,a=1,求△ABC周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆$\frac{x^2}{48}$+$\frac{y^2}{36}$=1,F1,F2是左、右焦点,点A是椭圆上的一点,I是三角形F1AF2内切圆的圆心.
(I)若∠F1AF2=60°,求三角形F1AF2的面积;
(II)直线AI交x轴于D点,求$\frac{AI}{ID}$;
( III)当点A在椭圆上顶点时,圆I和圆G关于直线y=1对称,圆G与x轴的正半轴交于点H,以H为圆心的圆H:(x-2)2+y2=r2(r>0)与圆G交于B,C两点.设P是圆G上异于B,C的任意一点,直线PB、PC分别与x轴交于点M和N,求$\overrightarrow{GM}$•$\overrightarrow{GN}$的值.

查看答案和解析>>

同步练习册答案