精英家教网 > 高中数学 > 题目详情
8.若a=sin(sin2009°),b=sin(cos2009°),c=cos(sin2009°),d=cos(cos2009°)则a,b,c,d从小到大的顺序是b<a<d<c.

分析 利用诱导公式的化简a、b、c、d,再根据三角函数在(0,$\frac{π}{2}$)上的单调性,求得a,b,c,d从小到大的顺序.

解答 解:∵a=sin(sin2009°)=sin(sin209°)=sin(-sin29°)=-sin(sin29°)<0,
b=sin(cos2009°)=sin(cos209°)=sin(-cos29°)=-sin(cos29°)<0,
c=cos(sin2009°)=cos(sin209°)=cos(-sin29°)=cos(sin29°)>0,
d=cos(cos2009°)=cos(cos209°)=cos(-cos29°)=cos(cos29°)>0,
1>cos29°>$\frac{1}{2}$>sin29°>0,故cos(sin29°)>cos(cos29°)>-sin(sin29°)>-sin(cos29°),
即b<a<d<c,
故答案为:b<a<d<c.

点评 本题主要考查诱导公式的应用,三角函数在(0,$\frac{π}{2}$)上的单调性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图1,2,在Rt△ABC中,AB=BC=4,点E在线段AB上,过点E作交AC于点F,将△AEF沿EF折起到△PEF的位置(点A与P重合),使得∠PEB=60°.

(1)求证:EF⊥PB;
(2)试问:当点E在何处时,四棱锥P-EFCB的侧面的面积最大?并求此时四棱锥P-EFCB的体积及直线PC与平面EFCB所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知直线PQ过P(2,3),Q(6,5)则直线PQ的斜率是(  )
A.2B.1C.-1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=lg(x+1)+$\frac{1}{{\sqrt{1-2x}}}$的定义域为$(-1,\frac{1}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设函数y=f(x)在R内有定义,对于给定的正数K,定义函数fK(x)=$\left\{\begin{array}{l}{f(x),f(x)≤K}\\{K,f(x)>K}\end{array}\right.$,取函数f(x)=2-|x|.当K=$\frac{1}{2}$时,函数fK(x)的单调递减区间为(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示,已知P、Q是单位正方体ABCD-A1B1C1D1的面A1B1BA和面ABCD的中心.
①求证:PQ∥平面BCC1B1
②设M为直线C1D1中点,求异面直线PQ与AM的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=4x3-ax2-2bx+2在x=1处有极大值-3,则ab等于(  )
A.2B.3C.6D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示.
(1)求f(x)的解析式;
(2)求f(x)在x∈[0,π]上的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求函数y=$\sqrt{{x}^{2}-2x+3}$的值域.

查看答案和解析>>

同步练习册答案