分析 先根据题中所给函数定义求出函数函数fK(x)的解析式,从而得到一个分段函数,然后再利用指数函数的性质求出所求即可.
解答 解:由f(x)=2-|x|≤$\frac{1}{2}$ 可得,$(\frac{1}{2})^{|x|}$≤$\frac{1}{2}$,
∴|x|≥1,解得:x≤-1或x≥1.
∴fk(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x≥1}\\{{2}^{x},x≤-1}\\{\frac{1}{2},-1<x<1}\end{array}\right.$.
由此可见,函数fK(x)在(-∞,-1)单调递增,在(1,+∞)上单调递减,
故答案为:(1,+∞).
点评 本题主要考查了抽象函数及其应用,同时考查了分段函数的应用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | {1,2,3,4,6,8} | B. | {2,4} | C. | {1,3} | D. | {6,8} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x1<x3<x2 | B. | x2<x1<x3 | C. | x1<x2<x3 | D. | x3<x2<x1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{\sqrt{3}}{3}$ | B. | -$\sqrt{3}$ | C. | $\sqrt{3}$ | D. | ±$\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com