| A. | $(6,6\sqrt{2})$或$(6,-6\sqrt{2})$ | B. | $(4,4\sqrt{3})$或$(4,-4\sqrt{3})$ | C. | (3,6)或(3,-6) | D. | $(9,6\sqrt{3})$或$(9,-6\sqrt{3})$ |
分析 求出抛物线焦点为F(3,0),准线方程为x=-3.设所求点为P(m,n),根据题意利用抛物线的定义建立关于m的等式,解出m的值后利用抛物线的方程求出n的值,即可得到满足条件的点P的坐标.
解答 解:∵抛物线方程为y2=12x,
∴抛物线的焦点为F(3,0),准线方程为x=-3.
设所求点为P(m,n),
∵P到焦点F的距离为9,P到准线的距离为m+3,
∴根据抛物线的定义,得m+3=9,解得m=6,
将点P(6,n)代入抛物线方程,得n2=12×6=72,解之得n=$±6\sqrt{2}$,
∴满足条件的点的坐标为(6,$±6\sqrt{2}$).
故选A.
点评 本题求抛物线上满足指定条件的点P的坐标,着重考查了抛物线的定义与标准方程等知识,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | (-1,2) | B. | [-1,+∞) | C. | (-∞,2] | D. | [-1,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\sqrt{2}$ | C. | $\frac{{\sqrt{6}+\sqrt{2}}}{4}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若K2的观测值为k=6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病 | |
| B. | 若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误 | |
| C. | 从独立性检验可知有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病 | |
| D. | 以上三种说法都不正确 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$-\frac{\sqrt{6}}{3}$,$\frac{\sqrt{6}}{3}$] | B. | [$-\frac{\sqrt{6}}{6}$,$\frac{2\sqrt{6}}{3}$] | C. | [$-\frac{\sqrt{6}}{3}$,$\frac{\sqrt{3}}{3}$] | D. | [$-\frac{2\sqrt{6}}{3}$,$\frac{2\sqrt{6}}{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x}{1+{x}^{2}}$ | B. | -$\frac{2x}{1+{x}^{2}}$ | C. | $\frac{2x}{1+{x}^{2}}$ | D. | -$\frac{x}{1+{x}^{2}}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com