精英家教网 > 高中数学 > 题目详情
19.抛物线y2=12x上与焦点的距离等于9的点的坐标是(  )
A.$(6,6\sqrt{2})$或$(6,-6\sqrt{2})$B.$(4,4\sqrt{3})$或$(4,-4\sqrt{3})$C.(3,6)或(3,-6)D.$(9,6\sqrt{3})$或$(9,-6\sqrt{3})$

分析 求出抛物线焦点为F(3,0),准线方程为x=-3.设所求点为P(m,n),根据题意利用抛物线的定义建立关于m的等式,解出m的值后利用抛物线的方程求出n的值,即可得到满足条件的点P的坐标.

解答 解:∵抛物线方程为y2=12x,
∴抛物线的焦点为F(3,0),准线方程为x=-3.
设所求点为P(m,n),
∵P到焦点F的距离为9,P到准线的距离为m+3,
∴根据抛物线的定义,得m+3=9,解得m=6,
将点P(6,n)代入抛物线方程,得n2=12×6=72,解之得n=$±6\sqrt{2}$,
∴满足条件的点的坐标为(6,$±6\sqrt{2}$).
故选A.

点评 本题求抛物线上满足指定条件的点P的坐标,着重考查了抛物线的定义与标准方程等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.二次函数f(x)=x2-2mx+3,在区间[-1,2]上不单调,则实数m的取值范围是(  )
A.(-1,2)B.[-1,+∞)C.(-∞,2]D.[-1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.球O1的内接正方体的体积V1与球O2的内接正方体V2的体积之比为64:125,则球O1与球O2的表面积之比为16:25.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2-3x,且f(x)在x=-1处取得极值.
(Ⅰ)求a的值;
(Ⅱ)求f(x)在[0,5]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.定义$|{\begin{array}{l}a&b\\ c&d\end{array}}|$=ad-bc.若θ是锐角△ABC中最小内角,函数f(θ)=$|{\begin{array}{l}{sinθ}&{cosθ}\\{-1}&1\end{array}}|$,则f(θ)的最大值是(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}$C.$\frac{{\sqrt{6}+\sqrt{2}}}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知数列{an}中,an=$\frac{1}{(n+1)^{2}}$,记f(n)=(1-a1)(1-a2)…(1-an),试计算f(1),f(2),f(3)的值,推测f(n)的表达式为f(n)=$\frac{n+2}{2(n+1)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是(  )
A.若K2的观测值为k=6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病
B.若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误
C.从独立性检验可知有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病
D.以上三种说法都不正确

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知实数x、y、z满足x2+2y2+3z2=4,设T=xy+yz,则T的取值范围是(  )
A.[$-\frac{\sqrt{6}}{3}$,$\frac{\sqrt{6}}{3}$]B.[$-\frac{\sqrt{6}}{6}$,$\frac{2\sqrt{6}}{3}$]C.[$-\frac{\sqrt{6}}{3}$,$\frac{\sqrt{3}}{3}$]D.[$-\frac{2\sqrt{6}}{3}$,$\frac{2\sqrt{6}}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知f($\frac{1-x}{1+x}$)=$\frac{1-{x}^{2}}{1+{x}^{2}}$,则f(x)的解析式可取为(  )
A.$\frac{x}{1+{x}^{2}}$B.-$\frac{2x}{1+{x}^{2}}$C.$\frac{2x}{1+{x}^{2}}$D.-$\frac{x}{1+{x}^{2}}$

查看答案和解析>>

同步练习册答案