精英家教网 > 高中数学 > 题目详情
14.已知矩阵A=$[\begin{array}{l}{1}&{-2}\\{-2}&{-1}\end{array}]$,B=$[\begin{array}{l}{5}\\{-15}\end{array}]$满足AX=B,求矩阵X.

分析 由AX=B,得$[\begin{array}{l}{1}&{-2}\\{-2}&{-1}\end{array}]$$[\begin{array}{l}{a}\\{b}\end{array}]$=$[\begin{array}{l}{5}\\{-15}\end{array}]$,求解即可.

解答 解:设x=$[\begin{array}{l}{a}\\{b}\end{array}]$,由$[\begin{array}{l}{1}&{-2}\\{-2}&{-1}\end{array}]$$[\begin{array}{l}{a}\\{b}\end{array}]$=$[\begin{array}{l}{5}\\{-15}\end{array}]$
得$\left\{\begin{array}{l}{a-2b=5}\\{-2a-b=-15}\end{array}\right.$解得$\left\{\begin{array}{l}{a=7}\\{b=1}\end{array}\right.$
此时x=$[\begin{array}{l}{7}\\{1}\end{array}]$

点评 本题主要考查了矩阵的应用,属于基础题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知椭圆M:$\frac{{x}^{2}}{4}$+y2=1的上、下顶点为A,B,过点P(0,2)的直线l与椭圆M相交于两个不同的点C,D(C在线段PD之间),则$\overrightarrow{OC}$•$\overrightarrow{OD}$的取值范围(  )
A.(-1,16)B.[-1,16]C.(-1,$\frac{13}{4}$)D.[-1,$\frac{13}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在平行四边形ABCD中,AB=1,BD=$\sqrt{2}$,∠ABD=90°,将△ABD沿对角线BD折起,折后的点A变为A1,且A1C=2.
(1)求证:平面A1BD⊥平面BCD;
(2)求异面直线BC与A1D所成角的余弦值;
(3)E为线段A1C上的一个动点,当线段EC的长为多少时,DE与平面BCD所成的角正弦值为$\frac{\sqrt{7}}{7}$?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.化简:$\frac{1}{2!}$+$\frac{2}{3!}$+$\frac{3}{4!}$+…+$\frac{n-1}{n!}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.7人排队,其中甲、乙、丙3人顺序一定,共有840不同的排法.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知点A(1,1),B(2,3),C(0,2),D(5,5)则向量$\overrightarrow{AC}$在$\overrightarrow{BD}$方向上的投影为-$\frac{\sqrt{13}}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知sinα+cos(π-α)=$\frac{1}{3}$,则sin2α的值为(  )
A.$\frac{8}{9}$B.$\frac{1}{9}$C.$-\frac{8}{9}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.从3名男生和1名女生中随机选取两人,则两人恰好是1名男生和1名女生的概率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=(x+1)2ln(x+1)+bx,曲线y=f(x)在点(0,0)处的切线方程为y=0.
(Ⅰ)求b的值;
(Ⅱ)证明:当x≥0时,f(x)≥$\frac{3}{2}{x^2}$;
(Ⅲ)若当x≥0时,f(x)≥mx2恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案