精英家教网 > 高中数学 > 题目详情
20.如图,正方体ABC-A1B1C1D1中,点F为A1D的中点.
(Ⅰ)求证:A1B∥平面AFC;
(Ⅱ)求证:平面A1B1D⊥平面AFC.

分析 (1)根据线面平行的判定定理只需证明直线A1B平行平面AFC内的直线FO即可;
(2)根据面面垂直判定定理只需证明AF⊥平面A1B1CD即可.

解答 证明:(1)连接BD交AC于点O,连接FO,
则点O是BD的中点.
∵点F为A1D的中点,∴A1B∥FO.
又A1B?平面AFC,FO?平面AFC,
∴A1B∥平面AFC.
(2)在正方体ABCD-A1B1C1D1中,
连接B1D.∵AC⊥BD,AC⊥BB1
∴AC⊥平面B1BD,AC⊥B1D.
又∵CD⊥平面A1ADD1,AF?平面A1ADD1
∴CD⊥AF.
又∵AF⊥A1D,
∴AF⊥平面A1B1CD.
∵AF?平面AFC.
∴平面A1B1CD⊥平面AFC,
即平面A1B1D⊥平面AFC.

点评 本题考查平面与平面垂直的判定,直线与平面平行的判定,考查空间想象能力,要求熟练掌握相应的判定定理和性质定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知数列{an}的前n项和为Sn,a1=$\frac{1}{4}$,Sn=Sn-1+an-1+$\frac{1}{2}$(n∈N*,n≥2),数列{bn}满足b1=2,bn+1=3bn+2,
(1)分别求数列{an}和{bn}通项公式;
(2)若数列{cn}=an-$\frac{10}{{b}_{n}+1}$,数列{cn}的前n项和为Tn,求数列{Tn}的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数fk(x)=xk+bx+c(k∈N*,b,c∈R),g(x)=logax(a>0,且a≠1)
(1)若b+c=1,且fk(1)=g($\frac{1}{4}$),求a的值;
(2)记函数f2(x)在[-1,1]上的最大值为M,最小值为m,求M-m≤4时b的取值范围;
(3)判断是否存在大于1的实数a,使得对任意x1∈[a,2a],都有x2∈[a,a2]满足等式g(x1)+g(x2)=p,且满足该等式的常数p的取值唯一?若存在,求出所有符合条件的a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,过其左焦点且与其长轴垂直的椭圆C的弦长为1.
(1)求椭圆C的方程
(2)求与椭圆C交于两点且过点(0,$\sqrt{3}$)的直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立坐标系.已知点A的极坐标为($\sqrt{2}$,$\frac{π}{4}$),直线L的直角坐标方程为x+y=a,且点A在直线上L.
(1)求a的值;
(2)圆C的参数方程为$\left\{{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}}$,(α为参数),试判断直线L与圆C的位置关系并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\left\{\begin{array}{l}{0,x=0}\\{\frac{lnx}{x},x>0}\end{array}\right.$,g(x)=|sin$\frac{π}{2}$x|,则f(x)与g(x)的图象在区间[0,6]上的交点个数为(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若函数f(x)满足f(2)=1且f(x+3)=2f(x),则f(2015)=(  )
A.2670B.2671C.2672D.2673

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.椭圆ax2+by2=1与直线y=1-x交于A、B两点,过原点与线段AB中点的直线的斜率为$\frac{\sqrt{3}}{2}$,则$\frac{b}{a}$值为(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{9\sqrt{3}}{2}$D.$\frac{2\sqrt{3}}{27}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.吉安市某工厂车间加工零件的个数x与所花费的时间y之间的线性回归方程为y=0.01x-0.5,则加工600个零件大约需要时间为(  )h.
A.0.5B.3.5C.5.5D.6.5

查看答案和解析>>

同步练习册答案