精英家教网 > 高中数学 > 题目详情
各项均为正数的等比数列{an}中,a3,3a2,5a1,成等差数列且 an<an+1(n∈N*),则公比q的值等于(  )
A、1B、2C、3D、5
考点:等比数列的前n项和
专题:等差数列与等比数列
分析:直接由a3,3a2,5a1成等差数列列式求得公比,再由数列是递增数列求得q的值.
解答: 解:在各项均为正数的等比数列{an}中,
由a3,3a2,5a1成等差数列,得
6a2=a3+5a1,即6a1q=a1q2+5a1
∴q2-6q+5=0,解得:q=1或q=5.
∵an<an+1,∴q=5.
故选:D.
点评:本题考查了等差数列的通项公式,考查了等比数列的性质,是基础的计算题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}前n项和Sn满足:2Sn+an=1
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
2an+1
(1+an)(1+an+1)
,数列{bn}的前n项和为Tn,求证:Tn
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=(1+
1
sinα
)(1+
1
cosα
) (0<a<
π
2
)的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设变量x,y满足约束条件
x+2y-6≥6
y≤2
x-4≤0
,则
y
x
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
3
sin2x
2
+
cos2x
2
,其中x∈[-
π
6
,a],若f(x)的值域是[-
1
2
,1],则a的取值范围是(  )
A、[-
π
6
π
6
]
B、[-
π
6
π
3
]
C、[
π
6
π
2
]
D、[
π
6
6
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:向量
a
=(2cosx,-
3
),
b
=(sinx+
3
cosx,1);函数f(x)=
a
b

(1)设f(x)=Asin(ωx+φ)+B(A>0,ω>0,0<φ<
π
2
),求f(x)的解析式及最小正周期;
(2)在△ABC中,角A,B,C所对边分别是a,b,c,若b2+c2=a2+bc,求f(C)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

圆心在原点且与直线y=2-x相切的圆的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的周期为π,且f(
π
6
)=1,将函数f(x)图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),再将所得图象向右平移
π
6
个单位长度后得到函数g(x)的图象,
(1)求函数f(x)与g(x)的解析式;
(2)在[0,
π
2
]中,使f(x)=
2
2
成立的x的值;
(3)求实数a与正整数n,使得F(x)=-2g2(x)+ag(x)+1在(0,nπ)内恰有2013个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}中,若a7=m,a14=n,则a12=
 
;2a12=
 

查看答案和解析>>

同步练习册答案