精英家教网 > 高中数学 > 题目详情
7.如图,四棱锥P-ABCD中,PA⊥平面ABCD,AD∥BC,AB⊥AD,BC=$\frac{2\sqrt{3}}{3}$,AB=1,BD=PA=2.求二面角A-PD-C的余弦值.

分析 以AB,AD,AP所在直线为x轴,y轴,z轴建立空间直角坐标系,由此利用向量法能求出二面角A-PD-C的余弦值.

解答 解:因为PA⊥平面ABCD,AB?平面ABCD,AD?平面ABCD,
所以PA⊥AB,PA⊥AD. 又AD⊥AB,
故分别以AB,AD,AP所在直线为x轴,y轴,z轴建立空间直角坐标系.
根据条件得AD=$\sqrt{3}$.所以B(1,0,0),D(0,$\sqrt{3}$,0),C(1,$\frac{2\sqrt{3}}{3}$,0),P(0,0,2). 
因为AB⊥平面PAD,所以平面PAD的一个法向量为$\overrightarrow{AB}$=(1,0,0).
 设平面PCD的一个法向量为$\overrightarrow{n}$=(x,y,z),
由$\overrightarrow{n}$⊥$\overrightarrow{PC}$,$\overrightarrow{n}$⊥$\overrightarrow{PD}$,$\overrightarrow{PC}$=(1,$\frac{2\sqrt{3}}{3}$,-2),$\overrightarrow{PD}$=(0,$\sqrt{3}$,-2),
得$\left\{\begin{array}{l}x+\frac{2\sqrt{3}}{3}y-2z=0\\ \sqrt{3}y-2z=0\end{array}$,解得$\left\{\begin{array}{l}x=\frac{2}{3}z\\ y=\frac{2\sqrt{3}}{3}z\end{array}$,不妨取z=3,则得$\overrightarrow{n}$=(2,2$\sqrt{3}$,3).
设二面角A-PD-C的大小为ϕ,则cosϕ=cos<$\overrightarrow{AB}$,$\overrightarrow{n}$>=$\frac{\overrightarrow{AB}•\overrightarrow{n}}{|\overrightarrow{AB}|•|\overrightarrow{n}|}$=$\frac{(1,0,0)•(2,2\sqrt{3},3)}{1×5}$=$\frac{2}{5}$.  
即二面角A-PD-C的余弦值为$\frac{2}{5}$.

点评 本题考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图是某企业2010年至2016年污水净化量(单位:吨)的折线图.

注:年份代码1~7分别对应年份2010~2016.
(1)由折线图看出,可用线性回归模型拟合y和t的关系,请用相关系数加以说明;
(2)建立y关于t的回归方程,预测2017年该企业污水净化量;
(3)请用数据说明回归方程预报的效果.
附注:参考数据:$\overline{y}$=54,$\sum_{i=1}^{7}$(ti-$\overline{t}$)(yi-$\overline{y}$)=21,$\sqrt{14}$≈3.74,$\sum_{i=1}^{7}$(yi-$\stackrel{∧}{{y}_{i}}$ )2=$\frac{9}{4}$.
参考公式:相关系数r=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$,回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{a}$+$\stackrel{∧}{b}$t中斜率和截距的最小二乘估计公式分别为$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{t}$.
反映回归效果的公式为R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\stackrel{∧}{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$,其中R2越接近于1,表示回归的效果越好.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.将石子摆成如图所示的梯形形状,称数列5,9,14,20,…为“梯形数”.根据图形的构成,此数列的第100项,即a100=5252.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.目前,学案导学模式已经成为教学中不可或缺的一部分,为了了解学案的合理使用是否对学生的期末复习有着重要的影响,我校随机抽取100名学生,对学习成绩和学案使用程度进行了调查,统计数据如表所示:
善于使用学案不善于使用学案总计
学习成绩优秀40
学习成绩一般30
总计100
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
P(K2≥k00.0500.0100.001
k03.8416.63510.828
已知随机抽查这100名学生中的一名学生,抽到善于使用学案的学生概率是0.6.
(1)请将上表补充完整(不用写计算过程);
(2)试运用独立性检验的思想方法分析:有多大的把握认为学生的学习成绩与对待学案的使用态度有关?
(3)若从学习成绩优秀的同学中随机抽取10人继续调查,采用何种方法较为合理,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A饮料,另外4杯为B饮料.公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定为3500元;若4杯选对3杯,则月工资定为2800元;否则月工资定为2100元.令X表示此人选对A饮料的杯数.假设此人对A和B两种饮料没有鉴别能力.
(1)求X的分布列;
(2)求此员工月工资被定为2100元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.${∫}_{0}^{1}$(2x+5)(x2+5x-3)10dx等于(  )
A.0B.$\frac{{3}^{11}}{11}$C.$\frac{2×{3}^{11}}{11}$D.$\frac{{2}^{11}}{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若Sn为数列{an}的前n项和,且2Sn=an+1an,a1=4,则数列{an}的通项公式为an=$\left\{\begin{array}{l}{n+3,n为奇数}\\{n,n为偶数}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.三棱柱ABC-A1B1C1的侧棱与底面垂直,且所有棱长均相等,M为A1C1的中点,则直线CM和直线A1B所成角的余弦值为(  )
A.$\frac{{\sqrt{6}}}{4}$B.$\frac{{\sqrt{10}}}{4}$C.$\frac{{\sqrt{15}}}{5}$D.$\frac{9}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.证明:函数y=2x4在[0,+∞)上单调递增.

查看答案和解析>>

同步练习册答案