精英家教网 > 高中数学 > 题目详情
1.若x,y满足约束条件$\left\{\begin{array}{l}{x≥1}\\{x-y≤3}\\{y≤-3(x-3)}\end{array}\right.$,则z=2x+y的最大值为8.

分析 作出不等式组对应的平面区域,利用目标函数的几何意义即可得到结论.

解答 解:先作出不等式$\left\{\begin{array}{l}{x≥1}\\{x-y≤3}\\{y≤-3(x-3)}\end{array}\right.$对应的区域,
z=2x+y的最大值,由图形可知直线z=2x+y过A时,目标函数取得最大值,
由$\left\{\begin{array}{l}{x=1}\\{y=-3(x-3)}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=6}\end{array}\right.$,即A(1,6),
z=2x+y=2×1+6=8.
故答案为:8.

点评 本题主要考查线性规划的应用,求出目标函数和条件对应直线的交点坐标是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.如图,长方形的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD,与DA运动,记∠BOP=x,将动点P到A,B两点距离之和表示为函数f(x),则f(x)的图象大致为(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图1,在等腰梯形PDCB中,PB∥DC,PB=3,DC=1,∠DPB=45°,DA⊥PB于点A,将△PAD沿AD折起,构成如图2所示的四棱锥P-ABCD,点M的棱PB上,且PM=$\frac{1}{2}$MB.
(1)求证:PD||平面MAC;
(2)若平面PAD⊥平面ABCD,求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知F1,F2分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,椭圆C上存在点P使∠F1PF2为钝角,则椭圆C的离心率的取值范围是(  )
A.($\frac{\sqrt{2}}{2}$,1)B.($\frac{1}{2}$,1)C.(0,$\frac{\sqrt{2}}{2}$)D.(0,$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.复数$z=\frac{1-i}{1+i}$(i为虚数单位)的虚部是(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.秦九韶是我国南宋时期的数学家,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法,如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入x的值为 2,则输出v的值为(  )
A.211-1B.211-2C.210-1D.210-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ax+xlnx的图象在点x=e(e为自然对数的底数)处的切线斜率为3.
(1)求实数a的值;
(2)当x>1时,求证f(x)>3(x-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.将函数$y=sin({x-\frac{π}{3}})$的图象上每点的横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),得到函数y=f(x)的图象.
(1)求函数f(x)的解析式及其图象的对称轴方程;
(2)在△ABC中,内角A,B,C的对边分别为a,b,c.若$f(A)=\frac{{\sqrt{3}}}{2},a=2,b=\frac{{2\sqrt{3}}}{3}$,求sinB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.把边长为1的正方形ABCD沿对角线BD折起,形成的三棱锥A-BCD的正视图与俯视图如图所示,则其侧视图的面积为$\frac{1}{4}$,二面角B-AC-D的余弦值为$-\frac{1}{3}$.

查看答案和解析>>

同步练习册答案