精英家教网 > 高中数学 > 题目详情
12.如图1,在等腰梯形PDCB中,PB∥DC,PB=3,DC=1,∠DPB=45°,DA⊥PB于点A,将△PAD沿AD折起,构成如图2所示的四棱锥P-ABCD,点M的棱PB上,且PM=$\frac{1}{2}$MB.
(1)求证:PD||平面MAC;
(2)若平面PAD⊥平面ABCD,求点A到平面PBC的距离.

分析 (1)在四棱锥P-ABCD中,连接BD交AC于O,连接OM,由△DOC∽△AOB,得$\frac{DO}{OB}=\frac{DC}{AB}$,结合已知可得$\frac{DO}{OB}=\frac{1}{2}$,又PM=$\frac{1}{2}$MB,即$\frac{PM}{MB}=\frac{1}{2}$,得到PD∥OM,再由线面平行的判定可得PD||平面MAC;
(2)由DA⊥PA,且平面PAD⊥平面ABCD,可得PA⊥AB,得到PA⊥平面ADC,再证明DC⊥PD,然后利用等积法求点A到平面PBC的距离.

解答 (1)证明:在四棱锥P-ABCD中,连接BD交AC于O,
连接OM,∵DC∥AB,∴△DOC∽△AOB,则$\frac{DO}{OB}=\frac{DC}{AB}$,
∵PB=3,DC=1,∠DPB=45°,DA⊥PB于点A,得AB=2,
∴$\frac{DO}{OB}=\frac{1}{2}$,又PM=$\frac{1}{2}$MB,即$\frac{PM}{MB}=\frac{1}{2}$,
∴PD∥OM,
∵PD?平面MAC,OM?平面MAC,
∴PD||平面MAC;
(2)解:∵DA⊥PA,且平面PAD⊥平面ABCD,
∴PA⊥AB,则PA⊥平面ADC,
又AD⊥DC,平面PAD⊥平面ABCD,
∴DC⊥平面PAB,则DC⊥PD,
${S}_{△ADC}=\frac{1}{2}×1×1=\frac{1}{2}$,${S}_{△PDC}=\frac{1}{2}×1×\sqrt{2}=\frac{\sqrt{2}}{2}$.
设点A到平面PBC的距离为d,
由VP-ADC=VA-PDC,得$\frac{1}{3}•{S}_{△ADC}•PA=\frac{1}{3}•{S}_{△PDC}•d$,
∴$\frac{1}{3}•\frac{1}{2}•1=\frac{1}{3}•\frac{\sqrt{2}}{2}•d$,解得:d=$\frac{\sqrt{2}}{2}$.

点评 本题考查直线与平面平行的判定,考查空间想象能力和思维能力,训练了利用等积法求多面体的体积,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.在△ABC中,a,b,c分别为内角A,B,C的对边,且b2+c2-a2=bc,$\overrightarrow{AB}•\overrightarrow{BC}>0$,$a=\frac{{\sqrt{3}}}{2}$,则b+c的取值范围是($\frac{\sqrt{3}}{2}$,$\frac{3}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设x,y满足约束条件$\left\{\begin{array}{l}x≥0,y≥0\\ x-y≥-1\\ x+y≤3\end{array}\right.$,则z=2x-y的最大值为(  )
A.0B.2C.-2D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知α是锐角,且cos(α+$\frac{π}{6}$)=$\frac{1}{3}$,则cos(α-$\frac{π}{3}$)=$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,ABCD-A1B1C1D1是正方体,${B_1}{E_1}={D_1}{F_1}=\frac{{{A_1}{B_1}}}{4}$,则BE1与DF1所成角的余弦值是$\frac{15}{17}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.(3-x)n的展开式中各项系数和为64,则x3的系数为-540(用数字填写答案)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知定义域为R的函数f(x)满足下列性质:f(x+1)=f(-x-1),f(2-x)=-f(x) 则f(3)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若x,y满足约束条件$\left\{\begin{array}{l}{x≥1}\\{x-y≤3}\\{y≤-3(x-3)}\end{array}\right.$,则z=2x+y的最大值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.华为推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行打分,打分的频数分布表如下:
女性用户:
分值区间[50,60)[60,70)[70,80)[80,90)[90,100)
频数2040805010
男性用户:
分值区间[50,60)[60,70)[70,80)[80,90)[90,100)
频数4575906030
(1)如果评分不低于70分,就表示该用户对手机“认可”,否则就表示“不认可”,完成下列2×2列联表,并回答是否有95%的把握认为性别对手机的“认可”有关:
女性用户男性用户合计
“认可”手机140180320
“不认可”手机60120180
合计200300500
附:
P(K2≧k)0.050.01
k3.8416.635
K2=$\frac{n(a+d-b+c)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
(2)根据评分的不同,运动分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80
分的用户中任意抽取3名用户,求3名用户中评分小于90分的人数的分布列和数学期望.

查看答案和解析>>

同步练习册答案