精英家教网 > 高中数学 > 题目详情
17.(3-x)n的展开式中各项系数和为64,则x3的系数为-540(用数字填写答案)

分析 令x=1,则2n=64,解得n=6.再利用通项公式即可得出.

解答 解:令x=1,则2n=64,解得n=6.
(3-x)6的通项公式为:Tr+1=${∁}_{6}^{r}×{3}^{6-r}(-x)^{r}$=(-1)r${∁}_{6}^{r}$•36-r•xr
令r=3,则x3的系数为-${∁}_{6}^{3}×{3}^{3}$=-540.
故答案为:-540.

点评 本题考查了二项式定理的性质及其通项公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知集合A={1,2},则A的真子集的个数为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.等比数列{an}的各项均为正数,且a5a6+a2a9=18,则log3a1+log3a2+…+log3a10的值为(  )
A.12B.10C.8D.2+log35

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设点P(x,y)(x≥0)为平面直角坐标系xOy中的一个动点(其中O为坐标原点),点P到定点M(0,$\frac{1}{2}$)的距离比点P到x轴的距离大$\frac{1}{2}$.
(1)求点P的轨迹方程;
(2)若直线l:y=kx与点P的轨迹相交于A,B两点,且|AB|=2$\sqrt{6}$,求k的值.
(3)设点P的轨迹是曲线C,点Q(1,y0)是曲线C上的一点,求以Q为切点的曲线C的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图1,在等腰梯形PDCB中,PB∥DC,PB=3,DC=1,∠DPB=45°,DA⊥PB于点A,将△PAD沿AD折起,构成如图2所示的四棱锥P-ABCD,点M的棱PB上,且PM=$\frac{1}{2}$MB.
(1)求证:PD||平面MAC;
(2)若平面PAD⊥平面ABCD,求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆E的中心在原点,焦点F1、F2在y轴上,离心率等于$\frac{2\sqrt{2}}{3}$,P是椭圆E上的点,以线段PF1为直径的圆经过F2,且9$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=1.
(1)求椭圆E的方程;
(2)做直线l与椭圆E交于两个不同的点M、N,如果线段MN被直线2x+1=0平分,求l的倾斜角的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知F1,F2分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,椭圆C上存在点P使∠F1PF2为钝角,则椭圆C的离心率的取值范围是(  )
A.($\frac{\sqrt{2}}{2}$,1)B.($\frac{1}{2}$,1)C.(0,$\frac{\sqrt{2}}{2}$)D.(0,$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.秦九韶是我国南宋时期的数学家,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法,如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入x的值为 2,则输出v的值为(  )
A.211-1B.211-2C.210-1D.210-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知命题甲是“{x|$\frac{{x}^{2}+x}{x-1}$≥0}”,命题乙是“{x|log3(2x+1)≤0}”,则甲是乙的必要不充分条件.(从充分不必要、必要不充分、充要、既不充分也不必要中选填)

查看答案和解析>>

同步练习册答案