分析 (1)根据同底数的运算性质,可化简;
(2)利用换元法和代入法,可得函数y=f(x)与y=g(x)的解析式及定义域.
解答 解:(1)(-2x${\;}^{\frac{1}{4}}$y${\;}^{-\frac{1}{3}}$)(3x${\;}^{-\frac{1}{2}}$y$\frac{2}{3}$)(-4x${\;}^{\frac{1}{4}}$y$\frac{2}{3}$)=(-2)×3×(-4)•${x}^{\frac{1}{4}-\frac{1}{2}+\frac{1}{4}}$${y}^{-\frac{1}{3}+\frac{2}{3}+\frac{2}{3}}$=24y
(2)∵函数f(3x-2)=x-1(x∈[0,2]),
令t=3x-2,则x=log3(t+2),t∈[-1,7],
故f(t)=log3(t+2)-1,t∈[-1,7],
即f(x)=log3(x+2)-1,x∈[-1,7],
又∵g(x)=f(x-2)+3,
∴g(x)=log3x+2,x∈[1,9]
点评 本题考查的知识点是指数的运算性质,函数解析式的求法,难度中档.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{5}$ | B. | $\frac{3}{5}i$ | C. | -$\frac{3}{5}$ | D. | $-\frac{3}{5}i$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f′(a)>0 | B. | f′(a)<0 | C. | f′(a)=0 | D. | f'(a)不存在 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3个 | B. | 2个 | C. | 1个 | D. | 0个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 取出的两球标号为3和7 | B. | 取出的两球标号的和为4 | ||
| C. | 取出的两球的标号都大于3 | D. | 取出的两球的标号的和为8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | $\frac{\sqrt{2}}{2}$ | C. | -1 | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com