精英家教网 > 高中数学 > 题目详情
11.设直线ax+by+c=0的倾斜角为α,且sinα+cosα=0,则a-b=(  )
A.1B.-1C.0D.-2

分析 由已知三角等式求出tanα,即直线的斜率,再由k=-$\frac{a}{b}$得到a=b,则a-b可求.

解答 解:由sinα+cosα=0,得tanα=-1,
∴直线ax+by+c=0的斜率k=$-\frac{a}{b}=-1$,
即a=b,
∴a-b=0.
故选:C.

点评 本题考查直线的倾斜角,考查了直线的倾斜角与斜率的关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.求由A(1,2)、B(0,1)、C(-2,3)三点所确定的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.方程$sinx+cosx=\frac{{\sqrt{2}}}{2}$解集是{x|x=kπ+(-1)k$\frac{π}{6}$-$\frac{π}{4}$,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=Asin(ωx+θ)+1,(A>0,0<θ<π),振幅为1,图象两个相邻最高点间距离为π,图象的一条对称轴方程为$x=\frac{π}{8}$,若将f(x)的图象向右平移$\frac{π}{8}$个单位,再向下平移一个单位得到函数g(x)图象.
(1)求f(x)的单调递增区间;
(2)在△ABC中,若$g(\frac{B}{2})g(\frac{C}{2})={[{g(\frac{A+π}{4})}]^2}$,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知集合A={x|3≤3x≤27},B={x|log2x<1}
(1)分别求A∩B,A∪B
(2)已知集合C={x|1<x<a},若C⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,已知Rt△OAB中,∠AOB=90°,OA=3,OB=2,M在OB上,且OM=1,N在OA上,且ON=1,P为AM与BN的交点,求∠MPN.(要求用向量求解).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在三棱锥P-ABC中,E、F分别为AC、BC的中点.
(Ⅰ)求证:EF∥平面PAB;
(Ⅱ)若平面PAC⊥平面ABC,且PA=PC,∠ABC=90°,求证:BC⊥平面PEF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(1)化简:(-2x${\;}^{\frac{1}{4}}$y${\;}^{-\frac{1}{3}}$)(3x${\;}^{-\frac{1}{2}}$y$\frac{2}{3}$)(-4x${\;}^{\frac{1}{4}}$y$\frac{2}{3}$)
(2)已知函数f(3x-2)=x-1(x∈[0,2]),函数g(x)=f(x-2)+3.求函数y=f(x)与y=g(x)的解析式及定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若(x+1)n=a0+a1(x-1)+a2(x-1)2+…+an(x-1)n,且a0+a1+…+an=243,则(n-x)n展开式的二次项系数和为(  )
A.16B.32C.64D.1024

查看答案和解析>>

同步练习册答案