精英家教网 > 高中数学 > 题目详情
2.方程$sinx+cosx=\frac{{\sqrt{2}}}{2}$解集是{x|x=kπ+(-1)k$\frac{π}{6}$-$\frac{π}{4}$,k∈Z}.

分析 先利用两角和公式对 sinx+cosx化简整理,进而根据正弦函数的性质可求得x的解集.

解答 解:sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,
∴sin(x+$\frac{π}{4}$)=$\frac{1}{2}$,
∴x+$\frac{π}{4}$=2kπ+$\frac{π}{6}$,或x+$\frac{π}{4}$=2kπ+$\frac{5}{6}$π,
∴x+$\frac{π}{4}$=kπ+(-1)k$\frac{π}{6}$,
∴x=kπ+(-1)k$\frac{π}{6}$-$\frac{π}{4}$,
∴解集为{x|x=kπ+(-1)k$\frac{π}{6}$-$\frac{π}{4}$,k∈Z},
故答案为:{x|x=kπ+(-1)k$\frac{π}{6}$-$\frac{π}{4}$,k∈Z}.

点评 本题主要考查了终边相同的角、正弦函数的基本性质.考查了学生对正弦函数基础知识的理解和运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.函数y=(sinx23的导数是(  )
A.y′=3xsinx2•sin2x2B.y′=3(sinx22
C.y′=3(sinx22cosx2D.y′=6sinx2cosx2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.计算下列各式:
(1)${({2\frac{3}{5}})^0}+{2^{-2}}•{|{-0.064}|^{\frac{1}{3}}}-{({\frac{9}{4}})^{\frac{1}{2}}}$;
(2)${lg^2}2+lg2•lg5+lg5-{2^{{{log}_2}3}}•{log_2}$$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设i是虚数单位,复数$z=\frac{{{i^5}(2+i)}}{2-i}$,其共轭复数$\overline z$的虚部是(  )
A.$\frac{3}{5}$B.$\frac{3}{5}i$C.-$\frac{3}{5}$D.$-\frac{3}{5}i$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.不等式x2-3x-18≤0的解集为[-3,6].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若n>0,则$n+\frac{32}{n^2}$的最小值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.方程$\frac{x|x|}{16}+\frac{y|y|}{9}$=-1表示的曲线即为函数y=f(x),有如下结论:(  )
①函数f(x)在R上单调递减;
②函数F(x)=4f(x)+3x不存在零点;
③函数y=f(x)的值域是R;
④若函数g(x)和f(x)的图象关于原点对称,则函数y=g(x)的图象就是方程$\frac{x|x|}{16}+\frac{y|y|}{9}$=-1确定的曲线.
其中所有正确的命题序号是(  )
A.①②B.②③C.①③④D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设直线ax+by+c=0的倾斜角为α,且sinα+cosα=0,则a-b=(  )
A.1B.-1C.0D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设实数x,y满足$\left\{\begin{array}{l}{x-y-2≤0}\\{x+2y-5≥0}\\{y-2≤0}\end{array}\right.$,则u=$\frac{1}{x}$+$\frac{1}{2y}$的取值范围是[$\frac{1}{2}$,$\frac{4}{5}$].

查看答案和解析>>

同步练习册答案