精英家教网 > 高中数学 > 题目详情
13.已知a为正的常数,函数f(x)=|ax-x2|+lnx.
(1)若a=2,求函数f(x)的单调递增区间;
(2)设g(x)=$\frac{f(x)}{x}$,求g(x)在区间[1,e]上的最小值.(e≈2.71828为自然对数的底数)

分析 (1)把a=2代入函数解析式,由绝对值内的代数式等于0求得x的值,由解得的x的值把定义域分段,去绝对值后求导,利用导函数求每一段内的函数的增区间,则a=2时的函数的增区间可求;
(2)把f(x)的解析式代入g(x)=$\frac{f(x)}{x}$,利用a与1和e的大小比较去绝对值,然后求出去绝对值后的函数的导函数,利用函数的单调性求出函数在区间[1,e]上的最小值.最后把求得的函数的最小值写成分段函数的形式即可..

解答 解:(1)a=2时,f(x)=|ax-x2|+lnx=$\left\{\begin{array}{l}{2x-{x}^{2}+lnx,0<x<2}\\{{x}^{2}-2x+lnx,x≥2}\end{array}\right.$,
当0<x<2时,f′(x)=$\frac{-2{x}^{2}+2x+1}{x}$,
令f′(x)>0时,解得0<x≤$\frac{1+\sqrt{3}}{2}$,
当x≥2时,f′(x)=$\frac{2{x}^{2}-2x+1}{x}$,
令f′(x)>0时,解得x≥2,
故函数的单调增区间是(0,$\frac{1+\sqrt{3}}{2}$],[2,+∞)                             
(2)g(x)=|x-a|+$\frac{lnx}{x}$=$\left\{\begin{array}{l}{x-a+\frac{lnx}{x},x>a}\\{a-x+\frac{lnx}{x},0<x≤a}\end{array}\right.$,
当a≥e时,则g(x)=a-x+$\frac{lnx}{x}$,g′(x)=-1-$\frac{lnx}{{x}^{2}}$+$\frac{1}{{x}^{2}}$=$\frac{-{x}^{2}+1-lnx}{{x}^{2}}$,
令h(x)=-x2+1-lnx,则h′(x)=-2x-$\frac{1}{x}$<0
∴h(x)在[1,e]上为减函数,则h(x)≤h(1)=0.
∴g(x)在[1,e]上为减函数,得g(x)min=g(e)=a-e+$\frac{1}{e}$;                               
当a≤1时,∵x∈[1,e],∴0≤lnx≤1,1-lnx≥0,x2+1-lnx≥0,∴g′(x)>0.
∴g(x)在[1,e]上为增函数,
∴g(x)min=g(1)=1-a.
当1<a<e时,g(x)在[1,a]上减,[a,e]上增,
g(x)min=g(a)=$\frac{lna}{a}$                                      
综上所述:$g{(x)_{min}}=\left\{{\begin{array}{l}{a-e+\frac{1}{e},a≥e}\\{1-a,a≤1}\\{\frac{lna}{a},1<a<e}\end{array}}\right.$

点评 本题考查了利用导数研究函数的单调性,考查了利用导数求函数在闭区间上的最值,考查了分类讨论得数学思想方法,考查了去绝对值的方法,正确的分类是解决该题的关键,属难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.
商店名称ABCDE
销售额x(千万元)35679
利润额y(百万元)23345
(1)画出散点图.观察散点图,说明两个变量有怎样的相关性.
(2)用最小二乘法计算利润额y对销售额x的回归直线方程.
(3)当销售额为4(千万元)时,估计利润额的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.甲乙两位歌手在“中国好声音”选拔赛中,5次得分情况如茎叶图所示,
(1)求甲乙两位歌手这5次得分的平均分
(2)请分析甲乙两位歌手这5次得分中谁的成绩更稳定.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,角A,B,C的对边分别为a,b,c.已知$asinB=\sqrt{3}bcosA$.
(1)求角A的大小;
(2)若$a=\sqrt{7},b=2$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=sinx+cosx,且f'(x)=3f(x),则tanx的值是(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知动圆P与圆F1:(x+1)2+y2=1外切,与圆F2:(x-1)2+y2=9内切.动圆P的圆心轨迹为曲线E,且曲线E与y轴的正半轴相交于点M.若曲线E上相异两点A、B满足直线MA,MB的斜率之积为$\frac{1}{4}$.
(1)求E的方程;
(2)证明直线AB恒过定点,并求定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知集合A={x|x2+x-6>0},B={x|$\frac{2x+1}{x-2}$≤1},求A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列函数中,在区间(0,2)上为增函数的是(  )
A.y=-2x+1B.y=$\frac{1}{3}$x2+1C.y=-x2-x-1D.y=x2-x+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.两个数120,168的最大公约数是24.

查看答案和解析>>

同步练习册答案