精英家教网 > 高中数学 > 题目详情
5.已知集合A={x|x2+x-6>0},B={x|$\frac{2x+1}{x-2}$≤1},求A∪B.

分析 先分别求出集合A和B,由此能求出A∪B.

解答 解:∵x2+x-6>0,∴x<-3或x>2,
∴A={xx<-3或x>2},…(4分)
∵$\frac{2x+1}{x-2}$≤1,∴$\frac{2x+1}{x-2}$-1=$\frac{x+3}{x-2}$≤0,解得-3≤x<2,
∴B={x|-3≤x<2}.…(8分)
∴A∪B={x|x<-3或x>2}∪{x|-3≤x<2}={x|x∈R且x≠2}.…(10分)

点评 本题考查并集的求法,是基础题,解题时要认真审题,注意不等式性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,用y表示点数之和.
(1)求事件“y=4”的概率;
(2)求事件“y≤10”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=lg(mx2+mx+1),若此函数的定义域为R,则实数m的取值范围是[0,4);若此函数的值域为R,则实数m的取值范围是[4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知a为正的常数,函数f(x)=|ax-x2|+lnx.
(1)若a=2,求函数f(x)的单调递增区间;
(2)设g(x)=$\frac{f(x)}{x}$,求g(x)在区间[1,e]上的最小值.(e≈2.71828为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某工厂制造甲、乙两种产品,已知制造1t甲产品要用煤9t,电力4kW,劳动力(按工作日计算)3个;制造1t乙产品要用煤4t,电力5kW,劳动力10个.又知制成甲产品1t可获利7万元,制成乙产品1t可获利12万元.现在此工厂只有煤360t,电力200kW,劳动力300个,在这种条件下应生产甲、乙两种产品各多少吨能获得最大经济效益?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.将函数y=sinx的图象的横坐标扩大3倍,再将图象向右平移3个单位,所得解析为(  )
A.y=sin(3x+1)B.y=sin($\frac{1}{3}$x-1)C.y=sin(3x+3)D.y=sin($\frac{1}{3}$x-3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设随机变量X服从正态分布N(0,1),对给定的a(0<a<1),数ua由P(X>ua)=α确定,若P(|X|<x)=α,则x等于(  )
A.u${\;}_{\frac{a}{2}}$B.u${\;}_{1-\frac{a}{2}}$C.u${\;}_{\frac{1-a}{2}}$D.u1-a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.直线$\left\{\begin{array}{l}{x=1+t}\\{y=1-t}\end{array}\right.$(t为参数)的倾斜角的大小为$\frac{3π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.等差数列{an}中Sn是其前n项和,a1=-2010,$\frac{{{S_{2011}}}}{2011}$-$\frac{{{S_{2009}}}}{2009}$=2,则S2010的值为(  )
A.-2009B.2009C.-2010D.2010

查看答案和解析>>

同步练习册答案