精英家教网 > 高中数学 > 题目详情
长方体ABCD-A1B1C1D1中,AA1=2AB=2AD,G为CC1中点,则直线A1C1与BG所成角的大小是(  )
A、30°B、45°
C、60°D、120°
考点:异面直线及其所成的角
专题:空间角
分析:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出直线A1C1与BG所成角.
解答: 解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,
建立空间直角坐标系,
设AA1=2AB=2AD=2,
A1(1,0,2),C1(0,1,2),
A1C1
=(-1,1,0),
B(1,1,0),G(0,1,1),
BG
=(-1,0,1),
设直线A1C1与BG所成角为θ,
cosθ=
|
A1C1
BG
|
|
A1C1
|•|
BG
|
=
1
2
×
2
=
1
2

∴θ=60°.
故选:C.
点评:本题考查空间点、线、面的位置关系及学生的空间想象能力、求异面直线角的能力,解题时要注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在正方体ABCD-A1B1C1D1中,已知M是棱AB的中点,求C1M与平面BCD1A1所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

某大学的一个社会实践调查小组,在对大学生的良好“光盘习惯”的调査中,随机发放了l20份问巻.对收回的l00份有效问卷进行统计,得到如下2x2列联表:
做不到光盘能做到光盘合计
451055
301545
合计7525100
(1)现已按是否能做到光盘分层从45份女生问卷中抽取了9份问卷,若从这9份问卷中随机抽取4份,并记其中能做到光盘的问卷的份数为ξ,试求随机变量ξ的分布列和数学期望
(2)如果认为良好“光盘习惯”与性别有关犯错误的概率不超过P,那么根据临界值表最精确的P的值应为多少?请说明理由.
附:独立性检验统计量K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d,
独立性检验临界表:
P(K2≥k00.250.150.100.050.025
k01.3232.0722.7063.8405.024

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式an=2n-
n
2n-1
,求an的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正方体ABCD-A1B1C1D1的棱长为2,点E是正方形BCC1B1的中心,点F,G分别是棱C1D1,DD1的中点.设点E1是点E在平面DCC1D1内的正投影.
(1)证明:直线FG⊥平面FEE1
(3)求异面直线E1G与EA所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,右焦点到直线y=x的距离为
3

(Ⅰ)求椭圆E的方程;
(Ⅱ)已知点M(2,1),斜率为
1
2
的直线l交椭圆E于两个不同点A,B,设直线MA与MB的斜率分别为k1,k2
①若直线l过椭圆的左顶点,求k1,k2的值;    
②试猜测k1,k2的关系,并给出你的证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线y=x3+4
(1)求曲线在P(2,12)处的切线方程;
(2)求曲线过点P(2,4)的切线方程;
(3)求斜率为1的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

盒中装着标有1,2,3,4,的蓝色卡片4张,标有1,2,3,4的红色卡片4张,现从盒中任意抽取3张,每张卡片被抽出的可能性相等,设取到一张红色卡片记2分,取到一张蓝色卡片记1分,以X表示抽出的3张卡片的总得分,Y表示抽出的3张卡片上最大的数字,求X和Y的概率分布.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边分别为a,b,c,已知c2=b2+
2
bc,sinA=
2
sinB,求角A,B,C的大小.

查看答案和解析>>

同步练习册答案