精英家教网 > 高中数学 > 题目详情
下表中的数阵为“森德拉姆数筛”,其特点是每行每列都成等差数列,记第i行第j列的数为aij,则数字73在表中出现的次数为
 

 2 3 4 5 6 7
 3 5 7 9 11 13
 4 7 10 13 16 19
 5 9 13 17 21 25
 6 11 16 21 26 31
 7 13 19 25 31 37
考点:归纳推理
专题:推理和证明
分析:第1行数组成的数列A1j(j=1,2,…)是以2为首项,公差为1的等差数列,第j列数组成的数列Aij(i=1,2,…)是以j+1为首项,公差为j的等差数列,求出通项公式,就求出结果.
解答: 解:第i行第j列的数记为Aij.那么每一组i与j的组合就是表中一个数.
因为第一行数组成的数列A1j(j=1,2,…)是以2为首项,公差为1的等差数列,
所以A1j=2+(j-1)×1=j+1,
所以第j列数组成的数列Aij(i=1,2,…)是以j+1为首项,公差为j的等差数列,
所以Aij=(j+1)+(i-1)×j=ij+1.
令Aij=ij+1=73,
∴ij=72=1×72=2×36=3×24=4×18=6×12=8×9=9×8=12×6=18×4=24×3=36×2=72×1,
所以,表中73共出现12次.
故答案为:12.
点评:本题考查了行列模型的等差数列应用,解题时利用首项和公差写出等差数列的通项公式,运用通项公式求值,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过点P(3,0)作一直线l,使它被两直线l1:2x-y-2=0和l2:x+y+3=0所截的线段AB以P为中点,求此直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,点(2,
π
6
)到极轴的距离
 

查看答案和解析>>

科目:高中数学 来源: 题型:

小明在做一道数学题目时发现:若复数z1=cosα1+isinα1,z2=cosα2+isinα2,z3=cosα3+isinα3(其中α1,α2,α3∈R),则z1•z2=cos(α12)+isin(α12),z2•z3=cos(α23)+isin(α23),根据上面的结论,可以提出猜想:z1•z2•z3=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

正三角形ABC的边长为a,利用斜二测画法得到的平面直观图为△A′B′C′,那么△A′B′C′的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,cos2
A
2
=
b+c
2c
(a,b,c分别为角A,B,C的对边),则cos
A+B
2
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某几何体的三视图如图所示,其中正视图与侧视图都是直角边为2的等腰直角三角形,则该几何体的表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

观察下列问题:
已知(1-2x)2013=a0+a1x+a2x2+a3x3+…+a2013x2013
令x=1,可得a0+a1+a2+…+a2013=(1-2•1)2013=-1,
令x=1,可得a0-a1+a2+…-a2013=(1+2•1)2013=32013
请仿照这种“赋值法”,令x=0,得到a0=
 
,并求出
a1
2
+
a2
22
+
a3
23
+…+
a2013
22013
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中错误的是(  )
A、命题“若x2-5x+6=0,则x=3”的逆否命题是“若x≠3,则x2-5x+6≠0”
B、已知命题p和q,若p∨q为假命题,则命题p与q中必一真一假
C、若x、y∈R,则“x=y”是xy≥(
x+y
2
2成立的充要条件
D、对命题p:?x∈R,使x2+x+2<0,则¬p:?x∈R,则x2+x+2≥0

查看答案和解析>>

同步练习册答案