【题目】如图,在三棱锥中, 底面,. 、分别为和的中点. 为侧棱上的动点.
(Ⅰ)求证: 平面;
(Ⅱ)求证:平面平面;
(Ⅲ)试判断直线与平面是否能够垂直.若能垂直,求的值;若不能垂直,请说明理由.
【答案】(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ) .
【解析】试题分析:
(Ⅰ)由题意结合几何关系可证得是平行四边形,则, 平面
(Ⅱ)由题意结合几何关系可证得, ,则平面,平面平面;
(Ⅲ)原命题成立,则仅需在平面内再找一条和相交的直线和即可.考查的情况,结合相似三角形的性质可得.
试题解析:
(Ⅰ)证明:∵是三棱柱,
∴三个侧面都是平行四边形, 且,
又∵、分别为和的中点,
∴且,
∴且,
∴是平行四边形,
∴,
∵平面, 平面,
∴平面.
(Ⅱ)证明:∵底面,
∴底面,
∴,
又∵,,
又∵是中点,
∴,
∵, 平面,
∴平面,
则平面平面;
(Ⅲ)直线与平面能够垂直,且,
由(Ⅱ)知平面,
∴,
若要使平面,仅需在平面内再找一条和相交的直线和即可.
此时我们取平面内和相交的直线,
若,则与相似,
∴,
∴.
科目:高中数学 来源: 题型:
【题目】已知函数满足如下条件:
①函数的最小值为,最大值为9;
②且;
③若函数在区间上是单调函数,则的最大值为2.
试探究并解决如下问题:
(Ⅰ)求,并求的值;
(Ⅱ)求函数的图象的对称轴方程;
(Ⅲ)设是函数的零点,求的值的集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l1:x+2y+1=0,l2:-2x+y+2=0,它们相交于点A.
(1)判断直线l1和l2是否垂直?请给出理由.
(2)求过点A且与直线l3:3x+y+4=0平行的直线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列各一元二次不等式中,解集为空集的是( )
A.(x+3)(x﹣1)>0B.(x+4)(x﹣1)<0
C.x2﹣2x+3<0D.2x2﹣3x﹣2>0
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com